apiVersion: sagemaker.aws.amazon.com/v1 kind: TrainingJob metadata: name: my-training-job spec: hyperParameters: # Modify these parameters to meet your own script's needs - name: mode_fpn value: "True" - name: mode_mask value: "True" - name: eval_period value: "1" - name: batch_norm value: "FreezeBN" algorithmSpecification: trainingImage: # The URL and tag of your ECR container trainingInputMode: File roleArn: # A role with SageMaker and S3 access region: # The region in which to run the training job outputDataConfig: s3OutputPath: s3:///output # The output path of our model resourceConfig: instanceCount: 1 instanceType: ml.m4.xlarge volumeSizeInGB: 5 stoppingCondition: maxRuntimeInSeconds: 86400 inputDataConfig: - channelName: train dataSource: s3DataSource: s3DataType: S3Prefix s3Uri: s3:///mask-rcnn/sagemaker/input/train/ # The source of the training data s3DataDistributionType: FullyReplicated contentType: application/tfrecord compressionType: None