apiVersion: sagemaker.aws.amazon.com/v1 kind: ProcessingJob metadata: name: kmeans-mnist-processing spec: environment: - name: MYVAR value: my_value - name: MYVAR2 value: my_value2 appSpecification: imageUri: 763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-training:1.5.0-cpu-py36-ubuntu16.04 containerEntrypoint: - python - /opt/ml/processing/code/kmeans_preprocessing.py roleArn: arn:aws:iam::123456789012:role/service-role/AmazonSageMaker-ExecutionRole region: us-west-2 networkConfig: enableNetworkIsolation: False processingOutputConfig: outputs: - outputName: train_data s3Output: s3Uri: s3://my-bucket/mnist_kmeans_example/output/ localPath: /opt/ml/processing/output_train/ s3UploadMode: EndOfJob - outputName: test_data s3Output: s3Uri: s3://my-bucket/mnist_kmeans_example/output/ localPath: /opt/ml/processing/output_test/ s3UploadMode: EndOfJob - outputName: valid_data s3Output: s3Uri: s3://my-bucket/mnist_kmeans_example/output/ localPath: /opt/ml/processing/output_valid/ s3UploadMode: EndOfJob processingResources: clusterConfig: instanceCount: 1 instanceType: ml.m5.xlarge volumeSizeInGB: 20 processingInputs: - inputName: mnist_tar s3Input: s3Uri: s3://sagemaker-sample-data-us-west-2/algorithms/kmeans/mnist/mnist.pkl.gz localPath: /opt/ml/processing/input s3DataType: S3Prefix s3InputMode: File s3CompressionType: None - inputName: source_code s3Input: s3Uri: s3://my-bucket/mnist_kmeans_example/processing_code/kmeans_preprocessing.py localPath: /opt/ml/processing/code s3DataType: S3Prefix s3InputMode: File s3CompressionType: None stoppingCondition: maxRuntimeInSeconds: 1800 tags: - key: tagKey value: tagValue