import pickle import gzip import numpy import io from sagemaker.amazon.common import write_numpy_to_dense_tensor print("Extracting MNIST data set") # Load the dataset with gzip.open('/opt/ml/processing/input/mnist.pkl.gz', 'rb') as f: train_set, valid_set, test_set = pickle.load(f, encoding='latin1') # process the data # Convert the training data into the format required by the SageMaker KMeans algorithm print("Writing training data") with open('/opt/ml/processing/output_train/train_data', 'wb') as train_file: write_numpy_to_dense_tensor(train_file, train_set[0], train_set[1]) print("Writing test data") with open('/opt/ml/processing/output_test/test_data', 'wb') as test_file: write_numpy_to_dense_tensor(test_file, test_set[0], test_set[1]) print("Writing validation data") # Convert the valid data into the format required by the SageMaker KMeans algorithm numpy.savetxt('/opt/ml/processing/output_valid/valid-data.csv', valid_set[0], delimiter=',', fmt='%g')