package awscloudwatch import ( _init_ "github.com/aws/aws-cdk-go/awscdk/v2/jsii" _jsii_ "github.com/aws/jsii-runtime-go/runtime" ) // Factory functions for standard statistics strings. // // Example: // var dashboard dashboard // var executionCountMetric metric // var errorCountMetric metric // // // dashboard.AddWidgets(cloudwatch.NewGraphWidget(&GraphWidgetProps{ // Title: jsii.String("Executions vs error rate"), // // Left: []iMetric{ // executionCountMetric, // }, // // Right: []*iMetric{ // errorCountMetric.With(&MetricOptions{ // Statistic: cloudwatch.Stats_AVERAGE(), // Label: jsii.String("Error rate"), // Color: cloudwatch.Color_GREEN(), // }), // }, // })) // type Stats interface { } // The jsii proxy struct for Stats type jsiiProxy_Stats struct { _ byte // padding } func NewStats_Override(s Stats) { _init_.Initialize() _jsii_.Create( "aws-cdk-lib.aws_cloudwatch.Stats", nil, // no parameters s, ) } // A shorter alias for `percentile()`. func Stats_P(percentile *float64) *string { _init_.Initialize() if err := validateStats_PParameters(percentile); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "p", []interface{}{percentile}, &returns, ) return returns } // Percentile indicates the relative standing of a value in a dataset. // // Percentiles help you get a better understanding of the distribution of your metric data. // // For example, `p(90)` is the 90th percentile and means that 90% of the data // within the period is lower than this value and 10% of the data is higher // than this value. func Stats_Percentile(percentile *float64) *string { _init_.Initialize() if err := validateStats_PercentileParameters(percentile); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "percentile", []interface{}{percentile}, &returns, ) return returns } // Percentile rank (PR) is the percentage of values that meet a fixed threshold. // // - If two numbers are given, they define the lower and upper bounds in absolute values, // respectively. // - If one number is given, it defines the upper bound (the lower bound is assumed to // be 0). // // For example, `percentileRank(300)` returns the percentage of data points that have a value of 300 or less. // `percentileRank(100, 2000)` returns the percentage of data points that have a value between 100 and 2000. func Stats_PercentileRank(v1 *float64, v2 *float64) *string { _init_.Initialize() if err := validateStats_PercentileRankParameters(v1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "percentileRank", []interface{}{v1, v2}, &returns, ) return returns } // Shorter alias for `percentileRank()`. func Stats_Pr(v1 *float64, v2 *float64) *string { _init_.Initialize() if err := validateStats_PrParameters(v1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "pr", []interface{}{v1, v2}, &returns, ) return returns } // Shorter alias for `trimmedCount()`. func Stats_Tc(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TcParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "tc", []interface{}{p1, p2}, &returns, ) return returns } // A shorter alias for `trimmedMean()`. func Stats_Tm(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TmParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "tm", []interface{}{p1, p2}, &returns, ) return returns } // Trimmed count (TC) is the number of data points in the chosen range for a trimmed mean statistic. // // - If two numbers are given, they define the lower and upper bounds in percentages, // respectively. // - If one number is given, it defines the upper bound (the lower bound is assumed to // be 0). // // For example, `tc(90)` returns the number of data points not including any // data points that fall in the highest 10% of the values. `tc(10, 90)` // returns the number of data points not including any data points that fall // in the lowest 10% of the values and the highest 90% of the values. func Stats_TrimmedCount(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TrimmedCountParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "trimmedCount", []interface{}{p1, p2}, &returns, ) return returns } // Trimmed mean (TM) is the mean of all values that are between two specified boundaries. // // Values outside of the boundaries are ignored when the mean is calculated. // You define the boundaries as one or two numbers between 0 and 100, up to 10 // decimal places. The numbers are percentages. // // - If two numbers are given, they define the lower and upper bounds in percentages, // respectively. // - If one number is given, it defines the upper bound (the lower bound is assumed to // be 0). // // For example, `tm(90)` calculates the average after removing the 10% of data // points with the highest values; `tm(10, 90)` calculates the average after removing the // 10% with the lowest and 10% with the highest values. func Stats_TrimmedMean(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TrimmedMeanParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "trimmedMean", []interface{}{p1, p2}, &returns, ) return returns } // Trimmed sum (TS) is the sum of the values of data points in a chosen range for a trimmed mean statistic. // // It is equivalent to `(Trimmed Mean) * (Trimmed count)`. // // - If two numbers are given, they define the lower and upper bounds in percentages, // respectively. // - If one number is given, it defines the upper bound (the lower bound is assumed to // be 0). // // For example, `ts(90)` returns the sum of the data points not including any // data points that fall in the highest 10% of the values. `ts(10, 90)` // returns the sum of the data points not including any data points that fall // in the lowest 10% of the values and the highest 90% of the values. func Stats_TrimmedSum(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TrimmedSumParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "trimmedSum", []interface{}{p1, p2}, &returns, ) return returns } // Shorter alias for `trimmedSum()`. func Stats_Ts(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_TsParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "ts", []interface{}{p1, p2}, &returns, ) return returns } // Winsorized mean (WM) is similar to trimmed mean. // // However, with winsorized mean, the values that are outside the boundary are // not ignored, but instead are considered to be equal to the value at the // edge of the appropriate boundary. After this normalization, the average is // calculated. You define the boundaries as one or two numbers between 0 and // 100, up to 10 decimal places. // // - If two numbers are given, they define the lower and upper bounds in percentages, // respectively. // - If one number is given, it defines the upper bound (the lower bound is assumed to // be 0). // // For example, `tm(90)` calculates the average after removing the 10% of data // points with the highest values; `tm(10, 90)` calculates the average after removing the // 10% with the lowest and 10% with the highest values. // // For example, `wm(90)` calculates the average while treating the 10% of the // highest values to be equal to the value at the 90th percentile. // `wm(10, 90)` calculates the average while treaing the bottom 10% and the // top 10% of values to be equal to the boundary values. func Stats_WinsorizedMean(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_WinsorizedMeanParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "winsorizedMean", []interface{}{p1, p2}, &returns, ) return returns } // A shorter alias for `winsorizedMean()`. func Stats_Wm(p1 *float64, p2 *float64) *string { _init_.Initialize() if err := validateStats_WmParameters(p1); err != nil { panic(err) } var returns *string _jsii_.StaticInvoke( "aws-cdk-lib.aws_cloudwatch.Stats", "wm", []interface{}{p1, p2}, &returns, ) return returns } func Stats_AVERAGE() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "AVERAGE", &returns, ) return returns } func Stats_IQM() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "IQM", &returns, ) return returns } func Stats_MAXIMUM() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "MAXIMUM", &returns, ) return returns } func Stats_MINIMUM() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "MINIMUM", &returns, ) return returns } func Stats_SAMPLE_COUNT() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "SAMPLE_COUNT", &returns, ) return returns } func Stats_SUM() *string { _init_.Initialize() var returns *string _jsii_.StaticGet( "aws-cdk-lib.aws_cloudwatch.Stats", "SUM", &returns, ) return returns }