package com.amazonaws.encryptionsdk.caching; import com.amazonaws.encryptionsdk.CryptoAlgorithm; import com.amazonaws.encryptionsdk.CryptoMaterialsManager; import com.amazonaws.encryptionsdk.DefaultCryptoMaterialsManager; import com.amazonaws.encryptionsdk.MasterKeyProvider; import com.amazonaws.encryptionsdk.exception.AwsCryptoException; import com.amazonaws.encryptionsdk.internal.EncryptionContextSerializer; import com.amazonaws.encryptionsdk.internal.Utils; import com.amazonaws.encryptionsdk.model.DecryptionMaterials; import com.amazonaws.encryptionsdk.model.DecryptionMaterialsRequest; import com.amazonaws.encryptionsdk.model.EncryptionMaterials; import com.amazonaws.encryptionsdk.model.EncryptionMaterialsRequest; import com.amazonaws.encryptionsdk.model.KeyBlob; import java.nio.charset.StandardCharsets; import java.security.GeneralSecurityException; import java.security.MessageDigest; import java.util.ArrayList; import java.util.UUID; import java.util.concurrent.TimeUnit; /** * The CachingCryptoMaterialsManager wraps another {@link CryptoMaterialsManager}, and caches its * results. This helps reduce the number of calls made to the underlying {@link * CryptoMaterialsManager} and/or {@link MasterKeyProvider}, which may help reduce cost and/or * improve performance. * *
The CachingCryptoMaterialsManager helps enforce a number of usage limits on encrypt. * Specifically, it limits the number of individual messages encrypted with a particular data key, * and the number of plaintext bytes encrypted with the same data key. It also allows you to * configure a maximum time-to-live for cache entries. * *
Note that when performing streaming encryption operations, unless you set the stream size * before writing any data using {@link * com.amazonaws.encryptionsdk.CryptoOutputStream#setMaxInputLength(long)} or {@link * com.amazonaws.encryptionsdk.CryptoInputStream#setMaxInputLength(long)}, the size of the message * will not be known, and to avoid exceeding byte use limits, caching will not be performed. * *
By default, two different {@link CachingCryptoMaterialsManager}s will not share cached * entries, even when using the same {@link CryptoMaterialsCache}. However, it's possible to make * different {@link CachingCryptoMaterialsManager}s share the same cached entries by assigning a * partition ID to them; all {@link CachingCryptoMaterialsManager}s with the same partition ID will * share the same cached entries. * *
Assigning partition IDs manually requires great care; if the backing {@link * CryptoMaterialsManager}s are not equivalent, having entries cross over between them can result in * problems such as encrypting messages to the wrong key, or accidentally bypassing access controls. * For this reason we recommend not supplying a partition ID unless required for your use case. */ public class CachingCryptoMaterialsManager implements CryptoMaterialsManager { private static final String CACHE_ID_HASH_ALGORITHM = "SHA-512"; private static final long MAX_MESSAGE_USE_LIMIT = 1L << 32; private static final long MAX_BYTE_USE_LIMIT = Long.MAX_VALUE; // 2^63 - 1 private final CryptoMaterialsManager backingCMM; private final CryptoMaterialsCache cache; private final byte[] partitionIdHash; private final String partitionId; private final long maxAgeMs; private final long messageUseLimit; private final long byteUseLimit; private final CryptoMaterialsCache.CacheHint hint = new CryptoMaterialsCache.CacheHint() { @Override public long getMaxAgeMillis() { return maxAgeMs; } }; public static class Builder { private CryptoMaterialsManager backingCMM; private CryptoMaterialsCache cache; private String partitionId = null; private long maxAge = 0; private long messageUseLimit = MAX_MESSAGE_USE_LIMIT; private long byteUseLimit = Long.MAX_VALUE; private Builder() {} /** * Sets the {@link CryptoMaterialsManager} that should be queried when the {@link * CachingCryptoMaterialsManager} (CCMM) incurs a cache miss. * *
You can set either a MasterKeyProvider or a CryptoMaterialsManager to back the CCMM - the * last value set will be used. * * @param backingCMM The CryptoMaterialsManager to invoke on cache misses * @return this builder */ public Builder withBackingMaterialsManager(CryptoMaterialsManager backingCMM) { this.backingCMM = backingCMM; return this; } /** * Sets the {@link MasterKeyProvider} that should be queried when the {@link * CachingCryptoMaterialsManager} (CCMM) incurs a cache miss. * *
You can set either a MasterKeyProvider or a CryptoMaterialsManager to back the CCMM - the * last value set will be used. * *
This method is equivalent to calling {@link * #withBackingMaterialsManager(CryptoMaterialsManager)} passing a {@link * DefaultCryptoMaterialsManager} constructed using your {@link MasterKeyProvider}. * * @param mkp The MasterKeyProvider to invoke on cache misses * @return this builder */ public Builder withMasterKeyProvider(MasterKeyProvider mkp) { return withBackingMaterialsManager(new DefaultCryptoMaterialsManager(mkp)); } /** * Sets the cache to which this {@link CryptoMaterialsManager} will be bound. * * @param cache The cache to associate with the CMM * @return this builder */ public Builder withCache(CryptoMaterialsCache cache) { this.cache = cache; return this; } /** * Sets the partition ID for this CMM. This is an optional operation. * *
By default, two CMMs will never use each other's cache entries. This helps ensure that * CMMs with different delegates won't incorrectly use each other's encrypt and decrypt results. * However, in certain special circumstances it can be useful to share entries between different * CMMs - for example, if the backing CMM is constructed based on some parameters that depend on * the operation, you may wish for delegates constructed with the same parameters to share the * same partition. * *
To accomplish this, set the same partition ID and backing cache on both CMMs; entries * cached from one of these CMMs can then be used by the other. This should only be done with * careful consideration and verification that the CMM delegates are equivalent for your * application's purposes. * *
By default, the partition ID is set to a random UUID to avoid any collisions. * * @param partitionId The partition ID * @return this builder */ public Builder withPartitionId(String partitionId) { this.partitionId = partitionId; return this; } /** * Sets the maximum lifetime for entries in the cache, for both encrypt and decrypt operations. * When the specified amount of time passes after initial creation of the entry, the entry will * be considered unusable, and the next operation will incur a cache miss. * * @param maxAge The amount of time entries are allowed to live. Must be positive. * @param units The units maxAge is expressed in * @return this builder */ public Builder withMaxAge(long maxAge, TimeUnit units) { if (maxAge <= 0) { throw new IllegalArgumentException("Max age must be positive"); } this.maxAge = units.toMillis(maxAge); return this; } /** * Sets the maximum number of individual messages that can be encrypted under the same a cached * data key. This does not affect decrypt operations. * *
Specifying this limit is optional; by default, the limit is set to 2^32. This is also the * maximum accepted value; if you specify a higher limit, an {@link IllegalArgumentException} * will be thrown. * * @param messageUseLimit The maximum number of messages that can be encrypted by the same data * key. Must be positive. * @return this builder */ public Builder withMessageUseLimit(long messageUseLimit) { if (messageUseLimit <= 0) { throw new IllegalArgumentException("Message use limit must be positive"); } if (messageUseLimit > MAX_MESSAGE_USE_LIMIT) { throw new IllegalArgumentException( "Message use limit exceeds limit of " + MAX_MESSAGE_USE_LIMIT); } // We limit the number of messages encrypted under the same data key primarily to stay far // away from any // chance of message ID collisions (and therefore collisions of the key+IV used for the actual // message // encryption). this.messageUseLimit = messageUseLimit; return this; } /** * Sets the maximum number of plaintext bytes that can be encrypted under the same a cached data * key. This does not affect decrypt operations. * *
Specifying this limit is optional; by default, the limit is set to 2^63 - 1. * *
While this limit can be set to zero, in this case keys can only be cached if they are used
* for zero-length messages.
*
* @param byteUseLimit The maximum number of bytes that can be encrypted by the same data key.
* Must be non-negative.
* @return this builder
*/
public Builder withByteUseLimit(long byteUseLimit) {
if (byteUseLimit < 0) {
throw new IllegalArgumentException("Byte use limit must be non-negative");
}
// Currently, since the byte use limit is Long.MAX_VALUE, this can't be reached, but is
// included for
// consistency.
//noinspection ConstantConditions
if (byteUseLimit > MAX_BYTE_USE_LIMIT) {
throw new IllegalArgumentException(
"Byte use limit exceeds maximum of " + MAX_BYTE_USE_LIMIT);
}
this.byteUseLimit = byteUseLimit;
return this;
}
public CachingCryptoMaterialsManager build() {
if (backingCMM == null) {
throw new IllegalArgumentException("Backing CMM must be set");
}
if (cache == null) {
throw new IllegalArgumentException("Cache must be set");
}
if (maxAge <= 0) {
throw new IllegalArgumentException("Max age must be set");
}
return new CachingCryptoMaterialsManager(this);
}
}
public static Builder newBuilder() {
return new Builder();
}
private CachingCryptoMaterialsManager(Builder builder) {
this.backingCMM = builder.backingCMM;
this.cache = builder.cache;
this.partitionId =
builder.partitionId != null ? builder.partitionId : UUID.randomUUID().toString();
this.maxAgeMs = builder.maxAge;
this.messageUseLimit = builder.messageUseLimit;
this.byteUseLimit = builder.byteUseLimit;
try {
this.partitionIdHash =
MessageDigest.getInstance(CACHE_ID_HASH_ALGORITHM)
.digest(partitionId.getBytes(StandardCharsets.UTF_8));
} catch (GeneralSecurityException e) {
throw new AwsCryptoException(e);
}
}
@Override
public EncryptionMaterials getMaterialsForEncrypt(EncryptionMaterialsRequest request) {
// We cannot correctly enforce size limits if the request has no known plaintext size, so bypass
// the cache in
// this case.
if (request.getPlaintextSize() == -1) {
return backingCMM.getMaterialsForEncrypt(request);
}
// Strip off information on the plaintext length & contents - we do this because we will be
// (potentially)
// reusing the result from the backing CMM across multiple requests, and as such it would be
// misleading to pass on
// the first such request's information to the backing CMM.
EncryptionMaterialsRequest upstreamRequest =
request.toBuilder().setPlaintext(null).setPlaintextSize(-1).build();
byte[] cacheId = getCacheIdentifier(upstreamRequest);
CryptoMaterialsCache.UsageStats increment = initialIncrementForRequest(request);
// If our plaintext size is such that even a brand new entry would reach or exceed cache limits,
// there's no
// point in accessing the cache - in fact, doing so would poison a cache entry that could
// potentially be still
// used for a smaller request. So we'll bypass the cache and just call the backing CMM directly
// in this case.
if (increment.getBytesEncrypted() >= byteUseLimit) {
return backingCMM.getMaterialsForEncrypt(request);
}
CryptoMaterialsCache.EncryptCacheEntry entry = cache.getEntryForEncrypt(cacheId, increment);
if (entry != null
&& !isEntryExpired(entry.getEntryCreationTime())
&& !hasExceededLimits(entry.getUsageStats())) {
return entry.getResult();
} else if (entry != null) {
// entry has potentially expired, so hint to the cache that it should be removed, in case the
// cache stores
// multiple entries or something
entry.invalidate();
}
// Cache miss.
EncryptionMaterials result = backingCMM.getMaterialsForEncrypt(request);
if (result.getAlgorithm().isSafeToCache()) {
cache.putEntryForEncrypt(cacheId, result, hint, initialIncrementForRequest(request));
}
return result;
}
private boolean hasExceededLimits(final CryptoMaterialsCache.UsageStats stats) {
return stats.getBytesEncrypted() > byteUseLimit
|| stats.getMessagesEncrypted() > messageUseLimit;
}
private boolean isEntryExpired(final long entryCreationTime) {
return System.currentTimeMillis() - entryCreationTime > maxAgeMs;
}
private CryptoMaterialsCache.UsageStats initialIncrementForRequest(
EncryptionMaterialsRequest request) {
return new CryptoMaterialsCache.UsageStats(request.getPlaintextSize(), 1);
}
@Override
public DecryptionMaterials decryptMaterials(DecryptionMaterialsRequest request) {
byte[] cacheId = getCacheIdentifier(request);
CryptoMaterialsCache.DecryptCacheEntry entry = cache.getEntryForDecrypt(cacheId);
if (entry != null && !isEntryExpired(entry.getEntryCreationTime())) {
return entry.getResult();
}
DecryptionMaterials result = backingCMM.decryptMaterials(request);
cache.putEntryForDecrypt(cacheId, result, hint);
return result;
}
private byte[] getCacheIdentifier(EncryptionMaterialsRequest req) {
try {
MessageDigest digest = MessageDigest.getInstance(CACHE_ID_HASH_ALGORITHM);
digest.update(partitionIdHash);
CryptoAlgorithm algorithm = req.getRequestedAlgorithm();
digest.update((byte) (algorithm != null ? 1 : 0));
if (algorithm != null) {
updateDigestWithAlgorithm(digest, algorithm);
}
digest.update(
MessageDigest.getInstance(CACHE_ID_HASH_ALGORITHM)
.digest(EncryptionContextSerializer.serialize(req.getContext())));
return digest.digest();
} catch (GeneralSecurityException e) {
throw new AwsCryptoException(e);
}
}
private byte[] getCacheIdentifier(DecryptionMaterialsRequest req) {
try {
MessageDigest digest = MessageDigest.getInstance(CACHE_ID_HASH_ALGORITHM);
byte[] hashOfContext =
digest.digest(EncryptionContextSerializer.serialize(req.getEncryptionContext()));
ArrayList