//---------------------------------------------------------------------------------- //Copyright (c) 2014 // //Permission is hereby granted, free of charge, to any person obtaining a copy //of this software and associated documentation files (the "Software"), to deal //in the Software without restriction, including without limitation the rights //to use, copy, modify, merge, publish, distribute, sublicense, and/or sell //copies of the Software, and to permit persons to whom the Software is //furnished to do so, subject to the following conditions: // //The above copyright notice and this permission notice shall be included in //all copies or substantial portions of the Software. // //THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR //IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, //FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE //AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER //LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, //OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN //THE SOFTWARE. //---------------------------------------------------------------------------------- //------------------------------------------------------------------------------ // Description : // // This is a flow-through FIFO that converts a RAM-based FIFO (2 clock // latency on the RAM) to what looks like a flop based FIFO. There is // no delay between pop and getting the next data. This sometimes simplifies // the FIFO pop logic. // // Note the _p stands for pipelined RAM, which means there is a 2 clock // latency on the RAM (registered out data) // //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ module ft_fifo_p ( clk, rst_n, sync_rst_n, ram_fifo_empty, ram_fifo_data, ft_pop, ram_pop, ft_valid, ft_data ); parameter FIFO_WIDTH = 32; input clk; //Global clock input rst_n; //Global reset input sync_rst_n; //Synchronous reset input ram_fifo_empty; //RAM FIFO is empty input[FIFO_WIDTH-1:0] ram_fifo_data; //RAM FIFO data input ft_pop; //POP FT FIFO output ram_pop; //Pop the RAM FIFO output ft_valid; //FT FIFO is valid output[FIFO_WIDTH-1:0] ft_data; //FT FIFO data //////////////////////////////////////////////////////// //Flow through FIFO to present data to arbiter reg ram_pop_q, ram_pop_qq; //Data is valid two clocks after pop reg[FIFO_WIDTH:0] ft0, ft1, ft2; //Flow through FIFO flops wire[FIFO_WIDTH:0] nxt_ft0, nxt_ft1, nxt_ft2; wire ft0_valid = ft0[FIFO_WIDTH]; wire ft1_valid = ft1[FIFO_WIDTH]; wire ft2_valid = ft2[FIFO_WIDTH]; reg[1:0] num_valid; //Qualify ft_pop with ft_valid; wire qual_ft_pop = ft_pop & ft0_valid; assign ram_pop = !ram_fifo_empty && sync_rst_n && ((num_valid<3) || qual_ft_pop); //Keep track of how many valid, will use this to determine if can POP or not always @(negedge rst_n or posedge clk) if (!rst_n) num_valid <= 0; else if (!sync_rst_n) num_valid <= 0; else begin case ({ram_pop, qual_ft_pop}) 2'b00, 2'b11: num_valid <= num_valid; 2'b01: num_valid <= num_valid - 1; 2'b10: num_valid <= num_valid + 1; endcase end always @(negedge rst_n or posedge clk) if (!rst_n) begin ram_pop_q <= 0; ram_pop_qq <= 0; end else begin ram_pop_q <= ram_pop; ram_pop_qq <= ram_pop_q; end assign nxt_ft0 = (ram_pop_qq && !ft0_valid)? {1'b1, ram_fifo_data}: ft0; assign nxt_ft1 = (ram_pop_qq && ft0_valid && !ft1_valid )? {1'b1, ram_fifo_data}: ft1; assign nxt_ft2 = (ram_pop_qq && ft1_valid && !ft2_valid )? {1'b1, ram_fifo_data}: ft2; always @(negedge rst_n or posedge clk) if (!rst_n) begin ft0 <= 0; ft1 <= 0; ft2 <= 0; end else if (!sync_rst_n) begin ft0 <= 0; ft1 <= 0; ft2 <= 0; end else if (qual_ft_pop) begin ft0 <= nxt_ft1; ft1 <= nxt_ft2; ft2 <= 0; end else begin ft0 <= nxt_ft0; ft1 <= nxt_ft1; ft2 <= nxt_ft2; end assign {ft_valid, ft_data} = ft0; ///////////////////////// //Simulation checks ///////////////////////// //synopsys translate_off `ifdef DESIGN_ERROR `include "design_error.inc" reg[1:0] num_valid_q; always @(posedge clk) begin if (!ft0_valid && ft_pop) begin design_error("FIFO underflow (pop when not valid)"); end if ((num_valid==0) && (num_valid_q==3) && sync_rst_n) begin design_error("NumValid overflow"); end if ((num_valid==3) && (num_valid_q==0)) begin design_error("NumValid underflow"); end num_valid_q <= num_valid; end `endif //synopsys translate_on endmodule