/* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project. */ /* ==================================================================== * Copyright (c) 2015 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include #include #include OPENSSL_MSVC_PRAGMA(warning(push)) OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) #include #include #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #include #include #include #include #include #include #include #include "../test/file_test.h" #include "../test/test_util.h" #include "../test/wycheproof_util.h" // evp_test dispatches between multiple test types. PrivateKey tests take a key // name parameter and single block, decode it as a PEM private key, and save it // under that key name. Decrypt, Sign, and Verify tests take a previously // imported key name as parameter and test their respective operations. static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { if (name == "MD5") { return EVP_md5(); } else if (name == "SHA1") { return EVP_sha1(); } else if (name == "SHA224") { return EVP_sha224(); } else if (name == "SHA256") { return EVP_sha256(); } else if (name == "SHA384") { return EVP_sha384(); } else if (name == "SHA512") { return EVP_sha512(); } else if (name == "SHA512/256") { return EVP_sha512_256(); } else if (name == "SHA3-224") { return EVP_sha3_224(); } else if (name == "SHA3-256") { return EVP_sha3_256(); } else if (name == "SHA3-384") { return EVP_sha3_384(); } else if (name == "SHA3-512") { return EVP_sha3_512(); } ADD_FAILURE() << "Unknown digest: " << name; return nullptr; } static int GetKeyType(FileTest *t, const std::string &name) { if (name == "RSA") { return EVP_PKEY_RSA; } if (name == "EC") { return EVP_PKEY_EC; } if (name == "DSA") { return EVP_PKEY_DSA; } if (name == "Ed25519") { return EVP_PKEY_ED25519; } if (name == "X25519") { return EVP_PKEY_X25519; } ADD_FAILURE() << "Unknown key type: " << name; return EVP_PKEY_NONE; } static int GetRSAPadding(FileTest *t, int *out, const std::string &name) { if (name == "PKCS1") { *out = RSA_PKCS1_PADDING; return true; } if (name == "PSS") { *out = RSA_PKCS1_PSS_PADDING; return true; } if (name == "OAEP") { *out = RSA_PKCS1_OAEP_PADDING; return true; } ADD_FAILURE() << "Unknown RSA padding mode: " << name; return false; } using KeyMap = std::map>; static bool ImportKey(FileTest *t, KeyMap *key_map, EVP_PKEY *(*parse_func)(CBS *cbs), int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { std::vector input; if (!t->GetBytes(&input, "Input")) { return false; } CBS cbs; CBS_init(&cbs, input.data(), input.size()); bssl::UniquePtr pkey(parse_func(&cbs)); if (!pkey) { return false; } std::string key_type; if (!t->GetAttribute(&key_type, "Type")) { return false; } EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get())); // The key must re-encode correctly. bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !marshal_func(cbb.get(), pkey.get()) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } bssl::UniquePtr free_der(der); std::vector output = input; if (t->HasAttribute("Output") && !t->GetBytes(&output, "Output")) { return false; } EXPECT_EQ(Bytes(output), Bytes(der, der_len)) << "Re-encoding the key did not match."; if (t->HasAttribute("ExpectNoRawPrivate")) { size_t len; EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)); } else if (t->HasAttribute("ExpectRawPrivate")) { std::vector expected; if (!t->GetBytes(&expected, "ExpectRawPrivate")) { return false; } std::vector raw; size_t len; if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) { return false; } raw.resize(len); if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) { return false; } raw.resize(len); EXPECT_EQ(Bytes(raw), Bytes(expected)); // Short buffers should be rejected. raw.resize(len - 1); len = raw.size(); EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)); } if (t->HasAttribute("ExpectNoRawPublic")) { size_t len; EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)); } else if (t->HasAttribute("ExpectRawPublic")) { std::vector expected; if (!t->GetBytes(&expected, "ExpectRawPublic")) { return false; } std::vector raw; size_t len; if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) { return false; } raw.resize(len); if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) { return false; } raw.resize(len); EXPECT_EQ(Bytes(raw), Bytes(expected)); // Short buffers should be rejected. raw.resize(len - 1); len = raw.size(); EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)); } // Save the key for future tests. const std::string &key_name = t->GetParameter(); EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; (*key_map)[key_name] = std::move(pkey); return true; } // SetupContext configures |ctx| based on attributes in |t|, with the exception // of the signing digest which must be configured externally. static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) { if (t->HasAttribute("RSAPadding")) { int padding; if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) { return false; } } if (t->HasAttribute("PSSSaltLength") && !EVP_PKEY_CTX_set_rsa_pss_saltlen( ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { return false; } if (t->HasAttribute("MGF1Digest")) { const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { return false; } } if (t->HasAttribute("OAEPDigest")) { const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest")); if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { return false; } } if (t->HasAttribute("OAEPLabel")) { std::vector label; if (!t->GetBytes(&label, "OAEPLabel")) { return false; } // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be // take ownership of the input. bssl::UniquePtr buf(reinterpret_cast( OPENSSL_memdup(label.data(), label.size()))); if (!buf || !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { return false; } buf.release(); } if (t->HasAttribute("DerivePeer")) { std::string derive_peer = t->GetAttributeOrDie("DerivePeer"); if (key_map->count(derive_peer) == 0) { ADD_FAILURE() << "Could not find key " << derive_peer; return false; } EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get(); if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) { return false; } } return true; } static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) { bssl::UniquePtr ctx(EVP_PKEY_CTX_new(key, nullptr)); if (!ctx || !EVP_PKEY_derive_init(ctx.get()) || !SetupContext(t, key_map, ctx.get())) { return false; } bssl::UniquePtr copy(EVP_PKEY_CTX_dup(ctx.get())); if (!copy) { return false; } for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { size_t len; std::vector actual, output; if (!EVP_PKEY_derive(pctx, nullptr, &len)) { return false; } actual.resize(len); if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { return false; } actual.resize(len); // Defer looking up the attribute so Error works properly. if (!t->GetBytes(&output, "Output")) { return false; } EXPECT_EQ(Bytes(output), Bytes(actual)); // Test when the buffer is too large. actual.resize(len + 1); len = actual.size(); if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { return false; } actual.resize(len); EXPECT_EQ(Bytes(output), Bytes(actual)); // Test when the buffer is too small. actual.resize(len - 1); len = actual.size(); if (t->HasAttribute("SmallBufferTruncates")) { if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { return false; } actual.resize(len); EXPECT_EQ(Bytes(output.data(), len), Bytes(actual)); } else { EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len)); ERR_clear_error(); } } return true; } static int EVP_marshal_private_key_version_one(CBB *cbb, const EVP_PKEY *key) { return EVP_marshal_private_key(cbb, key); } static int EVP_marshal_private_key_version_two(CBB *cbb, const EVP_PKEY *key) { return EVP_marshal_private_key_v2(cbb, key); } static void VerifyEVPSignOut(std::string key_name, std::vector input, std::vector actual, std::vector output, EVP_MD_CTX *ctx, size_t len) { // Unless not compatible, verify EVP_DigestSign() with EVP_DigestVerify instead of comparing outputs // This allows us to test the correctness of non-deterministic outputs (e.g. for ECDSA). if (key_name.find("Ed25519") != std::string::npos) { EXPECT_EQ(Bytes(output), Bytes(actual)); } else { EXPECT_TRUE(!EVP_DigestVerify(ctx, actual.data(), len, input.data(), input.size())); } } static bool TestEVP(FileTest *t, KeyMap *key_map) { if (t->GetType() == "PrivateKey") { int (*marshal_func)(CBB * cbb, const EVP_PKEY *key) = EVP_marshal_private_key; std::string version; if (t->HasAttribute("PKCS8VersionOut") && t->GetAttribute(&version, "PKCS8VersionOut")) { if (version == "1") { marshal_func = EVP_marshal_private_key_version_one; } else if (version == "2") { marshal_func = EVP_marshal_private_key_version_two; } else { return false; } } return ImportKey(t, key_map, EVP_parse_private_key, marshal_func); } if (t->GetType() == "PublicKey") { return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); } // Load the key. const std::string &key_name = t->GetParameter(); if (key_map->count(key_name) == 0) { ADD_FAILURE() << "Could not find key " << key_name; return false; } EVP_PKEY *key = (*key_map)[key_name].get(); int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, const uint8_t *in, size_t in_len) = nullptr; int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey) = nullptr; bool is_verify = false; if (t->GetType() == "Decrypt") { key_op_init = EVP_PKEY_decrypt_init; key_op = EVP_PKEY_decrypt; } else if (t->GetType() == "Sign") { key_op_init = EVP_PKEY_sign_init; key_op = EVP_PKEY_sign; } else if (t->GetType() == "Verify") { key_op_init = EVP_PKEY_verify_init; is_verify = true; } else if (t->GetType() == "SignMessage") { md_op_init = EVP_DigestSignInit; } else if (t->GetType() == "VerifyMessage") { md_op_init = EVP_DigestVerifyInit; is_verify = true; } else if (t->GetType() == "Encrypt") { key_op_init = EVP_PKEY_encrypt_init; key_op = EVP_PKEY_encrypt; } else if (t->GetType() == "Derive") { return TestDerive(t, key_map, key); } else { ADD_FAILURE() << "Unknown test " << t->GetType(); return false; } const EVP_MD *digest = nullptr; if (t->HasAttribute("Digest")) { digest = GetDigest(t, t->GetAttributeOrDie("Digest")); if (digest == nullptr) { return false; } } // For verify tests, the "output" is the signature. Read it now so that, for // tests which expect a failure in SetupContext, the attribute is still // consumed. std::vector input, actual, output; if (!t->GetBytes(&input, "Input") || (is_verify && !t->GetBytes(&output, "Output"))) { return false; } if (md_op_init) { bssl::ScopedEVP_MD_CTX ctx, copy; EVP_PKEY_CTX *pctx; if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) || !SetupContext(t, key_map, pctx) || !EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) { return false; } if (is_verify) { return EVP_DigestVerify(ctx.get(), output.data(), output.size(), input.data(), input.size()) && EVP_DigestVerify(copy.get(), output.data(), output.size(), input.data(), input.size()); } size_t len; if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { return false; } actual.resize(len); if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), input.size()) || !t->GetBytes(&output, "Output")) { return false; } actual.resize(len); VerifyEVPSignOut(key_name, input, actual, output, ctx.get(), len); // Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated // everything. if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(), input.size())) { return false; } actual.resize(len); if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(), input.size()) || !t->GetBytes(&output, "Output")) { return false; } actual.resize(len); VerifyEVPSignOut(key_name, input, actual, output, ctx.get(), len); return true; } bssl::UniquePtr ctx(EVP_PKEY_CTX_new(key, nullptr)); if (!ctx || !key_op_init(ctx.get()) || (digest != nullptr && !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || !SetupContext(t, key_map, ctx.get())) { return false; } bssl::UniquePtr copy(EVP_PKEY_CTX_dup(ctx.get())); if (!copy) { return false; } if (is_verify) { return EVP_PKEY_verify(ctx.get(), output.data(), output.size(), input.data(), input.size()) && EVP_PKEY_verify(copy.get(), output.data(), output.size(), input.data(), input.size()); } for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { size_t len; if (!key_op(pctx, nullptr, &len, input.data(), input.size())) { return false; } actual.resize(len); if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) { return false; } if (t->HasAttribute("CheckDecrypt")) { // Encryption is non-deterministic, so we check by decrypting. size_t plaintext_len; bssl::UniquePtr decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr)); if (!decrypt_ctx || !EVP_PKEY_decrypt_init(decrypt_ctx.get()) || (digest != nullptr && !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) || !SetupContext(t, key_map, decrypt_ctx.get()) || !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len, actual.data(), actual.size())) { return false; } output.resize(plaintext_len); if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len, actual.data(), actual.size())) { ADD_FAILURE() << "Could not decrypt result."; return false; } output.resize(plaintext_len); EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; } else if (t->HasAttribute("CheckVerify")) { // Some signature schemes are non-deterministic, so we check by verifying. bssl::UniquePtr verify_ctx(EVP_PKEY_CTX_new(key, nullptr)); if (!verify_ctx || !EVP_PKEY_verify_init(verify_ctx.get()) || (digest != nullptr && !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) || !SetupContext(t, key_map, verify_ctx.get())) { return false; } if (t->HasAttribute("VerifyPSSSaltLength")) { if (!EVP_PKEY_CTX_set_rsa_pss_saltlen( verify_ctx.get(), atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { return false; } } EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), actual.size(), input.data(), input.size())) << "Could not verify result."; } else { // By default, check by comparing the result against Output. if (!t->GetBytes(&output, "Output")) { return false; } actual.resize(len); EXPECT_EQ(Bytes(output), Bytes(actual)); } } return true; } TEST(EVPTest, TestVectors) { KeyMap key_map; FileTestGTest("crypto/evp_extra/evp_tests.txt", [&](FileTest *t) { bool result = TestEVP(t, &key_map); if (t->HasAttribute("Error")) { ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; uint32_t err = ERR_peek_error(); EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); } else if (!result) { ADD_FAILURE() << "Operation unexpectedly failed."; } }); } static void RunWycheproofVerifyTest(const char *path) { SCOPED_TRACE(path); FileTestGTest(path, [](FileTest *t) { t->IgnoreAllUnusedInstructions(); std::vector der; ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); CBS cbs; CBS_init(&cbs, der.data(), der.size()); bssl::UniquePtr key(EVP_parse_public_key(&cbs)); ASSERT_TRUE(key); const EVP_MD *md = nullptr; if (t->HasInstruction("sha")) { md = GetWycheproofDigest(t, "sha", true); ASSERT_TRUE(md); } bool is_pss = t->HasInstruction("mgf"); const EVP_MD *mgf1_md = nullptr; int pss_salt_len = -1; if (is_pss) { ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf")); mgf1_md = GetWycheproofDigest(t, "mgfSha", true); std::string s_len; ASSERT_TRUE(t->GetInstruction(&s_len, "sLen")); pss_salt_len = atoi(s_len.c_str()); } std::vector msg; ASSERT_TRUE(t->GetBytes(&msg, "msg")); std::vector sig; ASSERT_TRUE(t->GetBytes(&sig, "sig")); WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { // DSA is deprecated and is not usable via EVP. DSA *dsa = EVP_PKEY_get0_DSA(key.get()); uint8_t digest[EVP_MAX_MD_SIZE]; unsigned digest_len; ASSERT_TRUE( EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); int valid; bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), sig.size(), dsa) && valid; EXPECT_EQ(sig_ok, result.IsValid()); } else { bssl::ScopedEVP_MD_CTX ctx; EVP_PKEY_CTX *pctx; ASSERT_TRUE( EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get())); if (is_pss) { ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md)); ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len)); } int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), msg.size()); // BoringSSL does not enforce policies on weak keys and leaves it to the // caller. EXPECT_EQ(ret, result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}) ? 1 : 0); } }); } TEST(EVPTest, WycheproofDSA) { RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt"); } TEST(EVPTest, WycheproofECDSAP224) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt"); } TEST(EVPTest, WycheproofECDSAP256) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt"); } TEST(EVPTest, WycheproofECDSAP384) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); } TEST(EVPTest, WycheproofECDSAP521) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); } TEST(EVPTest, WycheproofECDSAsecp256k1) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp256k1_sha256_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/ecdsa_secp256k1_sha512_test.txt"); } TEST(EVPTest, WycheproofEdDSA) { RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt"); } TEST(EVPTest, WycheproofRSAPKCS1) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt"); // TODO(davidben): Is this file redundant with the tests above? RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_signature_test.txt"); } TEST(EVPTest, WycheproofRSAPKCS1Sign) { FileTestGTest( "third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt", [](FileTest *t) { t->IgnoreAllUnusedInstructions(); std::vector pkcs8; ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); CBS cbs; CBS_init(&cbs, pkcs8.data(), pkcs8.size()); bssl::UniquePtr key(EVP_parse_private_key(&cbs)); ASSERT_TRUE(key); const EVP_MD *md = GetWycheproofDigest(t, "sha", true); ASSERT_TRUE(md); std::vector msg, sig; ASSERT_TRUE(t->GetBytes(&msg, "msg")); ASSERT_TRUE(t->GetBytes(&sig, "sig")); WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); bssl::ScopedEVP_MD_CTX ctx; EVP_PKEY_CTX *pctx; ASSERT_TRUE( EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get())); std::vector out(EVP_PKEY_size(key.get())); size_t len = out.size(); int ret = EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size()); // BoringSSL does not enforce policies on weak keys and leaves it to the // caller. bool is_valid = result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}); EXPECT_EQ(ret, is_valid ? 1 : 0); if (is_valid) { out.resize(len); EXPECT_EQ(Bytes(sig), Bytes(out)); } }); } TEST(EVPTest, WycheproofRSAPSS) { RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/" "rsa_pss_2048_sha256_mgf1_32_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/" "rsa_pss_3072_sha256_mgf1_32_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/" "rsa_pss_4096_sha256_mgf1_32_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/" "rsa_pss_4096_sha512_mgf1_32_test.txt"); RunWycheproofVerifyTest( "third_party/wycheproof_testvectors/rsa_pss_misc_test.txt"); } static void RunWycheproofDecryptTest( const char *path, std::function setup_cb) { FileTestGTest(path, [&](FileTest *t) { t->IgnoreAllUnusedInstructions(); std::vector pkcs8; ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); CBS cbs; CBS_init(&cbs, pkcs8.data(), pkcs8.size()); bssl::UniquePtr key(EVP_parse_private_key(&cbs)); ASSERT_TRUE(key); std::vector ct, msg; ASSERT_TRUE(t->GetBytes(&ct, "ct")); ASSERT_TRUE(t->GetBytes(&msg, "msg")); WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); bssl::UniquePtr ctx(EVP_PKEY_CTX_new(key.get(), nullptr)); ASSERT_TRUE(ctx); ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get())); ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get())); std::vector out(EVP_PKEY_size(key.get())); size_t len = out.size(); int ret = EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size()); // BoringSSL does not enforce policies on weak keys and leaves it to the // caller. bool is_valid = result.IsValid({"SmallModulus"}); EXPECT_EQ(ret, is_valid ? 1 : 0); if (is_valid) { out.resize(len); EXPECT_EQ(Bytes(msg), Bytes(out)); } }); } static void RunWycheproofOAEPTest(const char *path) { RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { const EVP_MD *md = GetWycheproofDigest(t, "sha", true); ASSERT_TRUE(md); const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true); ASSERT_TRUE(mgf1_md); std::vector label; ASSERT_TRUE(t->GetBytes(&label, "label")); ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING)); ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md)); ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md)); bssl::UniquePtr label_copy( static_cast(OPENSSL_memdup(label.data(), label.size()))); ASSERT_TRUE(label_copy || label.empty()); ASSERT_TRUE( EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size())); // |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success. label_copy.release(); }); } TEST(EVPTest, WycheproofRSAOAEP2048) { RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha1_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha224_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha224_mgf1sha224_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha256_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha256_mgf1sha256_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha384_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha384_mgf1sha384_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha512_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_2048_sha512_mgf1sha512_test.txt"); } TEST(EVPTest, WycheproofRSAOAEP3072) { RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_3072_sha256_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_3072_sha256_mgf1sha256_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_3072_sha512_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_3072_sha512_mgf1sha512_test.txt"); } TEST(EVPTest, WycheproofRSAOAEP4096) { RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_4096_sha256_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_4096_sha256_mgf1sha256_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_4096_sha512_mgf1sha1_test.txt"); RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/" "rsa_oaep_4096_sha512_mgf1sha512_test.txt"); } TEST(EVPTest, WycheproofRSAOAEPMisc) { RunWycheproofOAEPTest( "third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt"); } static void RunWycheproofPKCS1DecryptTest(const char *path) { RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { // No setup needed. PKCS#1 is, sadly, the default. }); } TEST(EVPTest, WycheproofRSAPKCS1Decrypt) { RunWycheproofPKCS1DecryptTest( "third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt"); RunWycheproofPKCS1DecryptTest( "third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt"); RunWycheproofPKCS1DecryptTest( "third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt"); } struct ectlsencodedpoint_test_data { const uint8_t *public_key; size_t public_key_size; const uint8_t *private_key; size_t private_key_size; const uint8_t *expected_shared_secret; size_t expected_shared_secret_size; int key_type; int curve_nid; }; static EVP_PKEY * instantiate_public_key(int key_type, int curve_nid) { EVP_PKEY *pkey = NULL; if (NID_X25519 == curve_nid) { pkey = EVP_PKEY_new(); EXPECT_TRUE(pkey); EXPECT_TRUE(EVP_PKEY_set_type(pkey, key_type)); } else { EC_KEY *ec_key = EC_KEY_new_by_curve_name(curve_nid); EXPECT_TRUE(ec_key); pkey = EVP_PKEY_new(); EXPECT_TRUE(pkey); EXPECT_TRUE(EVP_PKEY_assign(pkey, EVP_PKEY_EC, (EC_KEY *) ec_key)); } return pkey; } static EVP_PKEY * instantiate_and_set_public_key(const uint8_t *public_key, size_t public_key_size, int curve_nid) { EVP_PKEY *pkey = NULL; if (NID_X25519 != curve_nid) { EC_KEY *ec_key = EC_KEY_new_by_curve_name(curve_nid); EXPECT_TRUE(ec_key); const EC_GROUP *ec_key_group = EC_KEY_get0_group(ec_key); EXPECT_TRUE(ec_key_group); EC_POINT *ec_point = EC_POINT_new(ec_key_group); EXPECT_TRUE(ec_point); EXPECT_TRUE(EC_POINT_oct2point(ec_key_group, ec_point, public_key, public_key_size, NULL)); EXPECT_TRUE(EC_KEY_set_public_key(ec_key, ec_point)); pkey = EVP_PKEY_new(); EXPECT_TRUE(pkey); EXPECT_TRUE(EVP_PKEY_assign(pkey, EVP_PKEY_EC, (EC_KEY *) ec_key)); EC_POINT_free(ec_point); } return pkey; } static EVP_PKEY * instantiate_and_set_private_key(const uint8_t *private_key, size_t private_key_size, int key_type, int curve_nid) { EVP_PKEY *pkey = NULL; if (NID_X25519 == curve_nid) { pkey = EVP_PKEY_new_raw_private_key(curve_nid, nullptr, private_key, private_key_size); EXPECT_TRUE(pkey); } else { EC_KEY *ec_key = EC_KEY_new_by_curve_name(curve_nid); EXPECT_TRUE(ec_key); BIGNUM *private_key_bn = BN_bin2bn(private_key, private_key_size, NULL); EXPECT_TRUE(private_key_bn); EXPECT_TRUE(EC_KEY_set_private_key(ec_key, private_key_bn)); BN_free(private_key_bn); pkey = EVP_PKEY_new(); EXPECT_TRUE(pkey); EXPECT_TRUE(EVP_PKEY_assign(pkey, key_type, (EC_KEY *) ec_key)); } return pkey; } TEST(EVPTest, ECTLSEncodedPoint) { // TLS wire-encoding format // (https://tools.ietf.org/html/rfc8422#section-5.4) // x25519: u-coordinate // NIST curves: 0x04 || x-coordinate || y-coordinate // Taken from https://tools.ietf.org/html/rfc7748#section-5.2 static const uint8_t kX25519PublicKey[] = { 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c }; static const uint8_t kX25519PrivateKey[] = { 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4 }; static const uint8_t kX25519ExpectedSharedSecret[] = { 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52 }; struct ectlsencodedpoint_test_data x25519_test_data = { kX25519PublicKey, // public_key X25519_PUBLIC_VALUE_LEN, // public_key_size kX25519PrivateKey, // private_key X25519_PRIVATE_KEY_LEN, // private_key_size kX25519ExpectedSharedSecret, // expected_shared_secret X25519_SHARED_KEY_LEN, // expected_shared_secret_size EVP_PKEY_X25519, // key_type NID_X25519 // curve_nid }; // P-{224,256,384,521} test vectors, taken from CAVP // (CAVP 20.1 - KASValidityTest_ECCStaticUnified_KDFConcat_NOKC) // https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/key-management static const uint8_t kP224PublicKey[] = { /* uncompressed */ 0x04, /* x-coordinate */ 0xd6, 0xf5, 0xf0, 0x6e, 0xf4, 0xc5, 0x56, 0x0a, 0xff, 0x8f, 0x49, 0x90, 0xef, 0xdb, 0xa5, 0x9a, 0xf8, 0xa8, 0xd3, 0x77, 0x0d, 0x80, 0x14, 0x6a, 0xc5, 0x82, 0x78, 0x85, /* y-coordinate */ 0xe0, 0x43, 0xae, 0x7b, 0xae, 0xa3, 0x77, 0x28, 0x60, 0x39, 0xc0, 0x7c, 0x04, 0x1b, 0x7a, 0x3b, 0x5d, 0x76, 0x96, 0xda, 0xdd, 0xa7, 0x05, 0x1a, 0xd6, 0x45, 0xa3, 0xea }; static const uint8_t kP224PrivateKey[] = { 0xc7, 0x39, 0x45, 0x68, 0x8b, 0x3d, 0xbb, 0xc6, 0xc2, 0xe7, 0x54, 0x75, 0xdf, 0x61, 0xd1, 0x44, 0x9d, 0x05, 0xf9, 0x64, 0x49, 0x62, 0x92, 0x67, 0xf2, 0x19, 0x5d, 0xaf }; static const uint8_t kP224ExpectedSharedSecret[] = { 0x50, 0x28, 0xd8, 0xa1, 0x62, 0xfe, 0xac, 0xbd, 0xfa, 0x5e, 0xca, 0x8c, 0xdf, 0x50, 0xcc, 0xb9, 0xe0, 0x7c, 0x6b, 0x7f, 0x96, 0xa8, 0xa8, 0x93, 0x24, 0xdd, 0xed, 0x7a }; struct ectlsencodedpoint_test_data p224_test_data = { kP224PublicKey, // public_key (1 + 28 + 28), // public_key_size kP224PrivateKey, // private_key 28, // private_key_size kP224ExpectedSharedSecret, // expected_shared_secret 28, // expected_shared_secret_size EVP_PKEY_EC, // key_type NID_secp224r1 // curve_nid }; static const uint8_t kP256PublicKey[] = { /* uncompressed */ 0x04, /* x-coordinate */ 0xe1, 0x5a, 0x44, 0x72, 0x91, 0xf0, 0x84, 0xfe, 0x88, 0x7a, 0x6c, 0x2c, 0x03, 0x22, 0x9a, 0xf3, 0x04, 0x8a, 0x5d, 0xfe, 0x84, 0x73, 0x70, 0xc9, 0x3f, 0x92, 0x72, 0x9b, 0x31, 0xc5, 0x5f, 0x7b, /* y-coordinate */ 0x36, 0xac, 0x98, 0x3e, 0x2d, 0x6f, 0xb9, 0x7a, 0x9e, 0x74, 0x09, 0x0d, 0x26, 0xf4, 0x83, 0x34, 0xce, 0x4f, 0x4b, 0x74, 0x9f, 0x3f, 0xd7, 0xaa, 0x92, 0xe2, 0xc5, 0x40, 0x23, 0x2c, 0xe1, 0xbd }; static const uint8_t kP256PrivateKey[] = { 0x4c, 0xab, 0xbc, 0x3f, 0xad, 0x44, 0x43, 0xcd, 0xa1, 0x36, 0x46, 0x39, 0x1e, 0x08, 0xbd, 0xa9, 0xd5, 0x29, 0xe1, 0x03, 0x96, 0xc0, 0xcb, 0xd2, 0xde, 0x9c, 0x1c, 0x73, 0xaf, 0xaa, 0x32, 0x99 }; static const uint8_t kP256ExpectedSharedSecret[] = { 0x89, 0x00, 0x1b, 0x34, 0x36, 0xf7, 0xe6, 0x6b, 0x00, 0x8d, 0x68, 0xa6, 0xc4, 0x7e, 0x01, 0x82, 0x49, 0x49, 0x4b, 0x92, 0x33, 0x92, 0x1b, 0x80, 0x7a, 0x75, 0x49, 0xd3, 0xad, 0xe2, 0x01, 0xa2 }; struct ectlsencodedpoint_test_data p256_test_data = { kP256PublicKey, // public_key (1 + 32 + 32), // public_key_size kP256PrivateKey, // private_key 32, // private_key_size kP256ExpectedSharedSecret, // expected_shared_secret 32, // expected_shared_secret_size EVP_PKEY_EC, // key_type NID_X9_62_prime256v1 // curve_nid }; static const uint8_t kP384PublicKey[] = { /* uncompressed */ 0x04, /* x-coordinate */ 0xe4, 0xe7, 0x0e, 0x43, 0xc6, 0xd0, 0x43, 0x46, 0xdd, 0xd7, 0x62, 0xa6, 0x14, 0x17, 0x6d, 0x22, 0x78, 0xb0, 0x47, 0xc5, 0xec, 0x28, 0x64, 0x84, 0x65, 0xf2, 0xa3, 0x90, 0xf6, 0xdd, 0x6b, 0xba, 0x54, 0xb9, 0x0b, 0x1e, 0x62, 0xb3, 0x91, 0x85, 0xf8, 0xf3, 0x95, 0xf6, 0x65, 0x73, 0x6d, 0x1d, /* y-coordinate */ 0xf9, 0x62, 0xa2, 0x73, 0x6a, 0xce, 0x52, 0x56, 0x18, 0x15, 0xd5, 0x99, 0x53, 0xa0, 0x19, 0x1b, 0x1f, 0xb1, 0xf2, 0x88, 0xa4, 0x5f, 0x8e, 0x28, 0x3d, 0x40, 0xa5, 0xff, 0x0e, 0x83, 0x3f, 0xf3, 0x0b, 0xd6, 0x05, 0xb1, 0x0c, 0xf8, 0xc2, 0x6c, 0x57, 0x4d, 0x4c, 0x2f, 0x0d, 0xcd, 0xce, 0x21 }; static const uint8_t kP384PrivateKey[] = { 0x08, 0x95, 0x0a, 0xc9, 0x2e, 0x16, 0xce, 0x9e, 0x50, 0xed, 0xe3, 0x65, 0x00, 0x3c, 0xb6, 0x2c, 0xea, 0x61, 0x03, 0xcf, 0xe5, 0x35, 0xfa, 0xb3, 0xdc, 0x6f, 0x01, 0x45, 0xf3, 0x8e, 0xf1, 0x1c, 0x10, 0x3e, 0xf1, 0x40, 0x79, 0x7e, 0x4f, 0x1e, 0x5f, 0x05, 0x3f, 0x8e, 0x83, 0x0c, 0xa7, 0xd9 }; static const uint8_t kP384ExpectedSharedSecret[] = { 0x4b, 0x3c, 0xda, 0x1c, 0xef, 0xb6, 0x8d, 0x0a, 0x2e, 0xf3, 0x53, 0x04, 0xa9, 0xb0, 0xca, 0x1d, 0x8c, 0xda, 0x8b, 0xdf, 0xc8, 0x01, 0x09, 0x8c, 0xf7, 0x3c, 0x21, 0x8e, 0x65, 0x67, 0x22, 0xc3, 0x64, 0x96, 0x9a, 0x2a, 0x1f, 0x57, 0xd1, 0x93, 0x03, 0x95, 0x98, 0x22, 0x7e, 0xf2, 0xb5, 0x18 }; struct ectlsencodedpoint_test_data p384_test_data = { kP384PublicKey, // public_key (1 + 48 + 48), // public_key_size kP384PrivateKey, // private_key 48, // private_key_size kP384ExpectedSharedSecret, // expected_shared_secret 48, // expected_shared_secret_size EVP_PKEY_EC, // key_type NID_secp384r1 // curve_nid }; static const uint8_t kP521PublicKey[] = { /* uncompressed */ 0x04, /* x-coordinate */ 0x01, 0x03, 0x7e, 0x95, 0xff, 0x8e, 0x40, 0x31, 0xe0, 0xb0, 0x36, 0x1c, 0x58, 0xc0, 0x62, 0x61, 0x39, 0x56, 0xaa, 0x30, 0x77, 0x0c, 0xed, 0x17, 0x15, 0xed, 0x1b, 0x4d, 0x34, 0x29, 0x33, 0x0f, 0xac, 0x2f, 0xc5, 0xc9, 0x3a, 0x69, 0xf7, 0x98, 0x63, 0x3a, 0x15, 0x75, 0x5e, 0x2d, 0xb8, 0x65, 0x09, 0x87, 0xf5, 0x75, 0x85, 0xcd, 0xe3, 0x51, 0x6b, 0x6d, 0xd0, 0xfc, 0x9f, 0x5f, 0xb4, 0xf8, 0xe7, 0x7b, /* y-coordinate */ 0x01, 0x1b, 0xba, 0xcc, 0x17, 0x80, 0x56, 0x8b, 0x9b, 0x32, 0xd4, 0x82, 0x3f, 0x32, 0x9a, 0x46, 0xd8, 0x39, 0x39, 0xd1, 0x18, 0xcc, 0x97, 0x79, 0x8d, 0x5d, 0xfa, 0x08, 0xb4, 0x27, 0xd3, 0xae, 0xe4, 0x76, 0x4f, 0x46, 0x47, 0xf9, 0xf2, 0x4e, 0xcf, 0x0f, 0xee, 0x6d, 0x61, 0x9c, 0x79, 0x73, 0xa8, 0x55, 0x4a, 0xd5, 0x51, 0x13, 0x0d, 0x1e, 0x3f, 0x6c, 0x9d, 0x2e, 0xe3, 0xa2, 0xa8, 0x6f, 0xf5, 0xc3 }; static const uint8_t kP521PrivateKey[] = { 0x01, 0xab, 0x4b, 0x1a, 0x8b, 0x60, 0xbb, 0x40, 0x23, 0xd6, 0x55, 0x05, 0x0f, 0x0a, 0xd5, 0xd6, 0xe1, 0xbf, 0x5b, 0xc5, 0x23, 0x90, 0x2a, 0x2f, 0x59, 0x69, 0x3e, 0xd0, 0xb9, 0x4f, 0x3c, 0x61, 0x06, 0xde, 0xb5, 0x92, 0xe0, 0xf1, 0x74, 0xa7, 0x8b, 0xbd, 0xef, 0x23, 0xec, 0xeb, 0x23, 0xfc, 0x97, 0x4b, 0x1c, 0xf5, 0x6a, 0x37, 0x73, 0x66, 0x6a, 0xfc, 0x76, 0x6f, 0x3d, 0xdc, 0xb4, 0xc2, 0x92, 0xd0 }; static const uint8_t kP521ExpectedSharedSecret[] = { 0x01, 0x1e, 0x28, 0x45, 0xc3, 0x2d, 0x1e, 0x49, 0xfc, 0x6a, 0x0e, 0x3c, 0xc8, 0x05, 0xc0, 0x98, 0x45, 0x11, 0xb0, 0x7f, 0xf6, 0xea, 0x41, 0xe1, 0xe1, 0x12, 0xee, 0x9c, 0x40, 0x8c, 0x74, 0xc3, 0x53, 0x5c, 0x97, 0xf2, 0xf1, 0x8d, 0x62, 0xf4, 0x3d, 0x27, 0x21, 0x40, 0x7b, 0x82, 0x13, 0xd0, 0x0b, 0xd3, 0x58, 0x86, 0x6a, 0x33, 0xc6, 0x0c, 0x67, 0x51, 0xd2, 0xdc, 0x23, 0x50, 0x06, 0x15, 0xb2, 0xba }; struct ectlsencodedpoint_test_data p521_test_data = { kP521PublicKey, // public_key (1 + 66 + 66), // public_key_size kP521PrivateKey, // private_key 66, // private_key_size kP521ExpectedSharedSecret, // expected_shared_secret 66, // expected_shared_secret_size EVP_PKEY_EC, // key_type NID_secp521r1 // curve_nid }; ectlsencodedpoint_test_data test_data_all[] = {x25519_test_data, p224_test_data, p256_test_data, p384_test_data, p521_test_data}; uint8_t *output = nullptr; size_t output_size = 0; uint8_t *shared_secret = nullptr; size_t shared_secret_size = 0; EVP_PKEY_CTX *pkey_ctx = nullptr; EVP_PKEY *pkey_public = nullptr; EVP_PKEY *pkey_private = nullptr; for (ectlsencodedpoint_test_data test_data : test_data_all) { pkey_private = instantiate_and_set_private_key(test_data.private_key, test_data.private_key_size, test_data.key_type, test_data.curve_nid); ASSERT_TRUE(pkey_private); pkey_public = instantiate_public_key(test_data.key_type, test_data.curve_nid); ASSERT_TRUE(pkey_public); // Test we can parse EC point into an EVP_PKEY object ASSERT_TRUE(EVP_PKEY_set1_tls_encodedpoint(pkey_public, test_data.public_key, test_data.public_key_size)); // Test we can successfully perform a ECDH key derivation using the // parsed public key and a corresponding private key pkey_ctx = EVP_PKEY_CTX_new(pkey_private, nullptr); ASSERT_TRUE(pkey_ctx); ASSERT_TRUE(EVP_PKEY_derive_init(pkey_ctx)); ASSERT_TRUE(EVP_PKEY_derive_set_peer(pkey_ctx, pkey_public)); ASSERT_TRUE(EVP_PKEY_derive(pkey_ctx, nullptr, &shared_secret_size)); EXPECT_EQ(shared_secret_size, test_data.expected_shared_secret_size); shared_secret = (uint8_t *) OPENSSL_malloc(shared_secret_size); ASSERT_TRUE(shared_secret); ASSERT_TRUE(EVP_PKEY_derive(pkey_ctx, shared_secret, &shared_secret_size)); EXPECT_EQ(shared_secret_size, test_data.expected_shared_secret_size); EXPECT_EQ(Bytes(shared_secret, shared_secret_size), Bytes(test_data.expected_shared_secret, shared_secret_size)); // Test we can write EC point from the EVP_PKEY object to wire format output_size = EVP_PKEY_get1_tls_encodedpoint(pkey_public, &output); EXPECT_EQ(output_size, test_data.public_key_size); EXPECT_EQ(Bytes(output, output_size), Bytes(test_data.public_key, output_size)); OPENSSL_free(output); OPENSSL_free(shared_secret); EVP_PKEY_CTX_free(pkey_ctx); EVP_PKEY_free(pkey_public); EVP_PKEY_free(pkey_private); output_size = 0; shared_secret_size = 0; } // Above tests explore the happy path. Now test that some invalid // input parameters are handled gracefully and with no crashes. for (ectlsencodedpoint_test_data test_data : test_data_all) { pkey_public = instantiate_public_key(test_data.key_type, test_data.curve_nid); ASSERT_TRUE(pkey_public); // pkey = NULL should result in |ERR_R_PASSED_NULL_PARAMETER| being passed // back for both functions. ASSERT_FALSE(EVP_PKEY_set1_tls_encodedpoint(nullptr, test_data.public_key, test_data.public_key_size)); EXPECT_EQ(ERR_R_PASSED_NULL_PARAMETER, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); ASSERT_FALSE(EVP_PKEY_get1_tls_encodedpoint(nullptr, &output)); EXPECT_EQ(ERR_R_PASSED_NULL_PARAMETER, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); // For |EVP_PKEY_get1_tls_encodedpoint| if out_ptr = NULL, we should also // expect |ERR_R_PASSED_NULL_PARAMETER| being passed back. ASSERT_FALSE(EVP_PKEY_get1_tls_encodedpoint(pkey_public, nullptr)); EXPECT_EQ(ERR_R_PASSED_NULL_PARAMETER, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); // For |EVP_PKEY_set1_tls_encodedpoint| if in = NULL or len < 1, we should // expect |ERR_R_PASSED_NULL_PARAMETER| or |EVP_R_INVALID_PARAMETERS|, // respectively. ASSERT_FALSE(EVP_PKEY_set1_tls_encodedpoint(pkey_public, nullptr, test_data.public_key_size)); EXPECT_EQ(ERR_R_PASSED_NULL_PARAMETER, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); ASSERT_FALSE(EVP_PKEY_set1_tls_encodedpoint(pkey_public, test_data.public_key, 0)); EXPECT_EQ(EVP_R_INVALID_PARAMETERS, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); EVP_PKEY_free(pkey_public); } // Test various unsupported key types are rejected int key_types_not_supported[] = {EVP_PKEY_RSA, EVP_PKEY_DSA, EVP_PKEY_ED25519}; const uint8_t not_supported[] = {'n','o','t',' ','s','u','p','p','o','r', 't','e','d'}; size_t not_supported_size = 13; // specific size irrelevant uint8_t *not_supported_out = nullptr; bssl::UniquePtr pkey_key_type_not_supported(EVP_PKEY_new()); for (int key_type : key_types_not_supported) { ASSERT_TRUE(pkey_key_type_not_supported.get()); ASSERT_TRUE(EVP_PKEY_set_type(pkey_key_type_not_supported.get(), key_type)); ASSERT_FALSE(EVP_PKEY_set1_tls_encodedpoint( pkey_key_type_not_supported.get(), not_supported, not_supported_size)); EXPECT_EQ(EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); ASSERT_FALSE(EVP_PKEY_get1_tls_encodedpoint( pkey_key_type_not_supported.get(), ¬_supported_out)); EXPECT_EQ(EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); } // Test compressed encoded EC point is rejected static const uint8_t kP256PublicKeyCompressed[] = { /* uncompressed + parity bit */ 0x03, /* x-coordinate */ 0xe1, 0x5a, 0x44, 0x72, 0x91, 0xf0, 0x84, 0xfe, 0x88, 0x7a, 0x6c, 0x2c, 0x03, 0x22, 0x9a, 0xf3, 0x04, 0x8a, 0x5d, 0xfe, 0x84, 0x73, 0x70, 0xc9, 0x3f, 0x92, 0x72, 0x9b, 0x31, 0xc5, 0x5f, 0x7b, }; bssl::UniquePtr pkey_public_compressed(instantiate_public_key( EVP_PKEY_EC, NID_X9_62_prime256v1)); ASSERT_TRUE(pkey_public_compressed); ASSERT_FALSE(EVP_PKEY_set1_tls_encodedpoint(pkey_public_compressed.get(), kP256PublicKeyCompressed, 1 + 32)); EXPECT_EQ(ERR_R_EVP_LIB, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); uint8_t *output_compressed = NULL; bssl::UniquePtr pkey_public_compressed_set( instantiate_and_set_public_key(kP256PublicKeyCompressed, 1 + 32, NID_X9_62_prime256v1)); EC_KEY_set_conv_form(EVP_PKEY_get0_EC_KEY(pkey_public_compressed_set.get()), POINT_CONVERSION_COMPRESSED); ASSERT_TRUE(pkey_public_compressed_set.get()); ASSERT_FALSE(EVP_PKEY_get1_tls_encodedpoint( pkey_public_compressed_set.get(), &output_compressed)); EXPECT_EQ(ERR_R_EVP_LIB, ERR_GET_REASON(ERR_peek_last_error())); ERR_clear_error(); }