/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include "internal.h" #include "../../internal.h" #include "../bn/internal.h" #define OPENSSL_DH_MAX_MODULUS_BITS 10000 DH *DH_new(void) { DH *dh = OPENSSL_malloc(sizeof(DH)); if (dh == NULL) { return NULL; } OPENSSL_memset(dh, 0, sizeof(DH)); CRYPTO_MUTEX_init(&dh->method_mont_p_lock); dh->references = 1; return dh; } DH *DH_new_by_nid(int nid) { switch (nid) { case NID_ffdhe2048: return DH_get_rfc7919_2048(); case NID_ffdhe4096: return DH_get_rfc7919_4096(); default: OPENSSL_PUT_ERROR(DH, DH_R_INVALID_NID); return NULL; } } void DH_free(DH *dh) { if (dh == NULL) { return; } if (!CRYPTO_refcount_dec_and_test_zero(&dh->references)) { return; } BN_MONT_CTX_free(dh->method_mont_p); BN_clear_free(dh->p); BN_clear_free(dh->g); BN_clear_free(dh->q); BN_clear_free(dh->pub_key); BN_clear_free(dh->priv_key); CRYPTO_MUTEX_cleanup(&dh->method_mont_p_lock); OPENSSL_free(dh); } unsigned DH_bits(const DH *dh) { return BN_num_bits(dh->p); } const BIGNUM *DH_get0_pub_key(const DH *dh) { return dh->pub_key; } const BIGNUM *DH_get0_priv_key(const DH *dh) { return dh->priv_key; } const BIGNUM *DH_get0_p(const DH *dh) { return dh->p; } const BIGNUM *DH_get0_q(const DH *dh) { return dh->q; } const BIGNUM *DH_get0_g(const DH *dh) { return dh->g; } void DH_get0_key(const DH *dh, const BIGNUM **out_pub_key, const BIGNUM **out_priv_key) { if (out_pub_key != NULL) { *out_pub_key = dh->pub_key; } if (out_priv_key != NULL) { *out_priv_key = dh->priv_key; } } void DH_clear_flags(DH *dh, int flags) { (void) dh; (void) flags; } int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { if (pub_key != NULL) { BN_free(dh->pub_key); dh->pub_key = pub_key; } if (priv_key != NULL) { BN_free(dh->priv_key); dh->priv_key = priv_key; } return 1; } void DH_get0_pqg(const DH *dh, const BIGNUM **out_p, const BIGNUM **out_q, const BIGNUM **out_g) { if (out_p != NULL) { *out_p = dh->p; } if (out_q != NULL) { *out_q = dh->q; } if (out_g != NULL) { *out_g = dh->g; } } int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { if ((dh->p == NULL && p == NULL) || (dh->g == NULL && g == NULL)) { return 0; } if (p != NULL) { BN_free(dh->p); dh->p = p; } if (q != NULL) { BN_free(dh->q); dh->q = q; } if (g != NULL) { BN_free(dh->g); dh->g = g; } // Invalidate the cached Montgomery parameters. BN_MONT_CTX_free(dh->method_mont_p); dh->method_mont_p = NULL; return 1; } int DH_set_length(DH *dh, unsigned priv_length) { dh->priv_length = priv_length; return 1; } int DH_generate_key(DH *dh) { boringssl_ensure_ffdh_self_test(); int ok = 0; int generate_new_key = 0; BN_CTX *ctx = NULL; BIGNUM *pub_key = NULL, *priv_key = NULL; if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { OPENSSL_PUT_ERROR(DH, DH_R_MODULUS_TOO_LARGE); goto err; } ctx = BN_CTX_new(); if (ctx == NULL) { goto err; } if (dh->priv_key == NULL) { priv_key = BN_new(); if (priv_key == NULL) { goto err; } generate_new_key = 1; } else { priv_key = dh->priv_key; } if (dh->pub_key == NULL) { pub_key = BN_new(); if (pub_key == NULL) { goto err; } } else { pub_key = dh->pub_key; } if (!BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, dh->p, ctx)) { goto err; } if (generate_new_key) { if (dh->q) { if (!BN_rand_range_ex(priv_key, 2, dh->q)) { goto err; } } else { // secret exponent length unsigned priv_bits = dh->priv_length; if (priv_bits == 0) { const unsigned p_bits = BN_num_bits(dh->p); if (p_bits == 0) { goto err; } priv_bits = p_bits - 1; } if (!BN_rand(priv_key, priv_bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { goto err; } } } if (!BN_mod_exp_mont_consttime(pub_key, dh->g, priv_key, dh->p, ctx, dh->method_mont_p)) { goto err; } dh->pub_key = pub_key; dh->priv_key = priv_key; ok = 1; err: if (ok != 1) { OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); } if (dh->pub_key == NULL) { BN_free(pub_key); } if (dh->priv_key == NULL) { BN_free(priv_key); } BN_CTX_free(ctx); return ok; } static int dh_compute_key(DH *dh, BIGNUM *out_shared_key, const BIGNUM *peers_key, BN_CTX *ctx) { if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS) { OPENSSL_PUT_ERROR(DH, DH_R_MODULUS_TOO_LARGE); return 0; } if (dh->priv_key == NULL) { OPENSSL_PUT_ERROR(DH, DH_R_NO_PRIVATE_VALUE); return 0; } int check_result; if (!DH_check_pub_key(dh, peers_key, &check_result) || check_result) { OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); return 0; } int ret = 0; BN_CTX_start(ctx); BIGNUM *p_minus_1 = BN_CTX_get(ctx); if (!p_minus_1 || !BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, dh->p, ctx)) { goto err; } if (!BN_mod_exp_mont_consttime(out_shared_key, peers_key, dh->priv_key, dh->p, ctx, dh->method_mont_p) || !BN_copy(p_minus_1, dh->p) || !BN_sub_word(p_minus_1, 1)) { OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); goto err; } // This performs the check required by SP 800-56Ar3 section 5.7.1.1 step two. if (BN_cmp_word(out_shared_key, 1) <= 0 || BN_cmp(out_shared_key, p_minus_1) == 0) { OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); goto err; } ret = 1; err: BN_CTX_end(ctx); return ret; } int dh_compute_key_padded_no_self_test(unsigned char *out, const BIGNUM *peers_key, DH *dh) { BN_CTX *ctx = BN_CTX_new(); if (ctx == NULL) { return -1; } BN_CTX_start(ctx); int dh_size = DH_size(dh); int ret = -1; BIGNUM *shared_key = BN_CTX_get(ctx); if (shared_key && dh_compute_key(dh, shared_key, peers_key, ctx) && BN_bn2bin_padded(out, dh_size, shared_key)) { ret = dh_size; } BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int DH_compute_key_padded(unsigned char *out, const BIGNUM *peers_key, DH *dh) { boringssl_ensure_ffdh_self_test(); return dh_compute_key_padded_no_self_test(out, peers_key, dh); } int DH_compute_key(unsigned char *out, const BIGNUM *peers_key, DH *dh) { boringssl_ensure_ffdh_self_test(); BN_CTX *ctx = BN_CTX_new(); if (ctx == NULL) { return -1; } BN_CTX_start(ctx); int ret = -1; BIGNUM *shared_key = BN_CTX_get(ctx); if (shared_key && dh_compute_key(dh, shared_key, peers_key, ctx)) { // A |BIGNUM|'s byte count fits in |int|. ret = (int)BN_bn2bin(shared_key, out); } BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int DH_compute_key_hashed(DH *dh, uint8_t *out, size_t *out_len, size_t max_out_len, const BIGNUM *peers_key, const EVP_MD *digest) { *out_len = (size_t)-1; const size_t digest_len = EVP_MD_size(digest); if (digest_len > max_out_len) { return 0; } // We have to avoid the underlying |EVP_Digest| services updating the indicator // state, so we lock the state here. FIPS_service_indicator_lock_state(); int ret = 0; const size_t dh_len = DH_size(dh); uint8_t *shared_bytes = OPENSSL_malloc(dh_len); unsigned out_len_unsigned; if (!shared_bytes || // SP 800-56A is ambiguous about whether the output should be padded prior // to revision three. But revision three, section C.1, awkwardly specifies // padding to the length of p. // // Also, padded output avoids side-channels, so is always strongly // advisable. DH_compute_key_padded(shared_bytes, peers_key, dh) != (int)dh_len || !EVP_Digest(shared_bytes, dh_len, out, &out_len_unsigned, digest, NULL) || out_len_unsigned != digest_len) { goto err; } *out_len = digest_len; ret = 1; err: FIPS_service_indicator_unlock_state(); OPENSSL_free(shared_bytes); return ret; } int DH_size(const DH *dh) { return BN_num_bytes(dh->p); } unsigned DH_num_bits(const DH *dh) { return BN_num_bits(dh->p); } int DH_up_ref(DH *dh) { CRYPTO_refcount_inc(&dh->references); return 1; } // All the groups in RFC 7919 are of the form: // q = (p-1)/2 // g = 2 static DH *calculate_rfc7919_DH_from_p(const BN_ULONG data[], size_t data_len) { BIGNUM *const ffdhe_p = BN_new(); BIGNUM *const ffdhe_q = BN_new(); BIGNUM *const ffdhe_g = BN_new(); DH *const dh = DH_new(); if (!ffdhe_p || !ffdhe_q || !ffdhe_g || !dh) { goto err; } bn_set_static_words(ffdhe_p, data, data_len); if (!BN_rshift1(ffdhe_q, ffdhe_p) || !BN_set_word(ffdhe_g, 2) || !DH_set0_pqg(dh, ffdhe_p, ffdhe_q, ffdhe_g)) { goto err; } return dh; err: BN_free(ffdhe_p); BN_free(ffdhe_q); BN_free(ffdhe_g); DH_free(dh); return NULL; } DH *DH_get_rfc7919_2048(void) { // This is the prime from https://tools.ietf.org/html/rfc7919#appendix-A.1, // which is specifically approved for FIPS in appendix D of SP 800-56Ar3. static const BN_ULONG kFFDHE2048Data[] = { TOBN(0xffffffff, 0xffffffff), TOBN(0x886b4238, 0x61285c97), TOBN(0xc6f34a26, 0xc1b2effa), TOBN(0xc58ef183, 0x7d1683b2), TOBN(0x3bb5fcbc, 0x2ec22005), TOBN(0xc3fe3b1b, 0x4c6fad73), TOBN(0x8e4f1232, 0xeef28183), TOBN(0x9172fe9c, 0xe98583ff), TOBN(0xc03404cd, 0x28342f61), TOBN(0x9e02fce1, 0xcdf7e2ec), TOBN(0x0b07a7c8, 0xee0a6d70), TOBN(0xae56ede7, 0x6372bb19), TOBN(0x1d4f42a3, 0xde394df4), TOBN(0xb96adab7, 0x60d7f468), TOBN(0xd108a94b, 0xb2c8e3fb), TOBN(0xbc0ab182, 0xb324fb61), TOBN(0x30acca4f, 0x483a797a), TOBN(0x1df158a1, 0x36ade735), TOBN(0xe2a689da, 0xf3efe872), TOBN(0x984f0c70, 0xe0e68b77), TOBN(0xb557135e, 0x7f57c935), TOBN(0x85636555, 0x3ded1af3), TOBN(0x2433f51f, 0x5f066ed0), TOBN(0xd3df1ed5, 0xd5fd6561), TOBN(0xf681b202, 0xaec4617a), TOBN(0x7d2fe363, 0x630c75d8), TOBN(0xcc939dce, 0x249b3ef9), TOBN(0xa9e13641, 0x146433fb), TOBN(0xd8b9c583, 0xce2d3695), TOBN(0xafdc5620, 0x273d3cf1), TOBN(0xadf85458, 0xa2bb4a9a), TOBN(0xffffffff, 0xffffffff), }; return calculate_rfc7919_DH_from_p(kFFDHE2048Data, OPENSSL_ARRAY_SIZE(kFFDHE2048Data)); } DH *DH_get_rfc7919_4096(void) { // This is the prime from https://tools.ietf.org/html/rfc7919#appendix-A.3, // which is specifically approved for FIPS in appendix D of SP 800-56Ar3. static const BN_ULONG kFFDHE4096Data[] = { TOBN(0xFFFFFFFF, 0xFFFFFFFF),TOBN(0xC68A007E, 0x5E655F6A), TOBN(0x4DB5A851, 0xF44182E1),TOBN(0x8EC9B55A, 0x7F88A46B), TOBN(0x0A8291CD, 0xCEC97DCF),TOBN(0x2A4ECEA9, 0xF98D0ACC), TOBN(0x1A1DB93D, 0x7140003C),TOBN(0x092999A3, 0x33CB8B7A), TOBN(0x6DC778F9, 0x71AD0038),TOBN(0xA907600A, 0x918130C4), TOBN(0xED6A1E01, 0x2D9E6832),TOBN(0x7135C886, 0xEFB4318A), TOBN(0x87F55BA5, 0x7E31CC7A),TOBN(0x7763CF1D, 0x55034004), TOBN(0xAC7D5F42, 0xD69F6D18),TOBN(0x7930E9E4, 0xE58857B6), TOBN(0x6E6F52C3, 0x164DF4FB),TOBN(0x25E41D2B, 0x669E1EF1), TOBN(0x3C1B20EE, 0x3FD59D7C),TOBN(0x0ABCD06B, 0xFA53DDEF), TOBN(0x1DBF9A42, 0xD5C4484E),TOBN(0xABC52197, 0x9B0DEADA), TOBN(0xE86D2BC5, 0x22363A0D),TOBN(0x5CAE82AB, 0x9C9DF69E), TOBN(0x64F2E21E, 0x71F54BFF),TOBN(0xF4FD4452, 0xE2D74DD3), TOBN(0xB4130C93, 0xBC437944),TOBN(0xAEFE1309, 0x85139270), TOBN(0x598CB0FA, 0xC186D91C),TOBN(0x7AD91D26, 0x91F7F7EE), TOBN(0x61B46FC9, 0xD6E6C907),TOBN(0xBC34F4DE, 0xF99C0238), TOBN(0xDE355B3B, 0x6519035B),TOBN(0x886B4238, 0x611FCFDC), TOBN(0xC6F34A26, 0xC1B2EFFA),TOBN(0xC58EF183, 0x7D1683B2), TOBN(0x3BB5FCBC, 0x2EC22005),TOBN(0xC3FE3B1B, 0x4C6FAD73), TOBN(0x8E4F1232, 0xEEF28183),TOBN(0x9172FE9C, 0xE98583FF), TOBN(0xC03404CD, 0x28342F61),TOBN(0x9E02FCE1, 0xCDF7E2EC), TOBN(0x0B07A7C8, 0xEE0A6D70),TOBN(0xAE56EDE7, 0x6372BB19), TOBN(0x1D4F42A3, 0xDE394DF4),TOBN(0xB96ADAB7, 0x60D7F468), TOBN(0xD108A94B, 0xB2C8E3FB),TOBN(0xBC0AB182, 0xB324FB61), TOBN(0x30ACCA4F, 0x483A797A),TOBN(0x1DF158A1, 0x36ADE735), TOBN(0xE2A689DA, 0xF3EFE872),TOBN(0x984F0C70, 0xE0E68B77), TOBN(0xB557135E, 0x7F57C935),TOBN(0x85636555, 0x3DED1AF3), TOBN(0x2433F51F, 0x5F066ED0),TOBN(0xD3DF1ED5, 0xD5FD6561), TOBN(0xF681B202, 0xAEC4617A),TOBN(0x7D2FE363, 0x630C75D8), TOBN(0xCC939DCE, 0x249B3EF9),TOBN(0xA9E13641, 0x146433FB), TOBN(0xD8B9C583, 0xCE2D3695),TOBN(0xAFDC5620, 0x273D3CF1), TOBN(0xADF85458, 0xA2BB4A9A),TOBN(0xFFFFFFFF, 0xFFFFFFFF) }; return calculate_rfc7919_DH_from_p(kFFDHE4096Data, OPENSSL_ARRAY_SIZE(kFFDHE4096Data)); }