/* Copyright (c) 2020, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../ec_extra/internal.h" #include "../fipsmodule/ec/internal.h" #include "../internal.h" #include "../test/test_util.h" #include "internal.h" BSSL_NAMESPACE_BEGIN namespace { const uint8_t kMessage[] = "MSG"; TEST(TrustTokenTest, KeyGenExp1) { uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len; ASSERT_TRUE(TRUST_TOKEN_generate_key( TRUST_TOKEN_experiment_v1(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001)); ASSERT_EQ(292u, priv_key_len); ASSERT_EQ(301u, pub_key_len); const uint8_t kKeygenSecret[] = "SEED"; ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret( TRUST_TOKEN_experiment_v1(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret, sizeof(kKeygenSecret) - 1)); const uint8_t kExpectedPriv[] = { 0x00, 0x00, 0x00, 0x01, 0x98, 0xaa, 0x32, 0xfc, 0x5f, 0x83, 0x35, 0xea, 0x57, 0x4f, 0x9e, 0x61, 0x48, 0x6e, 0x89, 0x9d, 0x3d, 0xaa, 0x38, 0x5d, 0xd0, 0x06, 0x96, 0x62, 0xe8, 0x0b, 0xd6, 0x5f, 0x12, 0xa4, 0xcc, 0xa9, 0xb5, 0x20, 0x1b, 0x13, 0x8c, 0x1c, 0xaf, 0x36, 0x1b, 0xab, 0x0c, 0xc6, 0xac, 0x38, 0xae, 0x96, 0x3d, 0x14, 0x9d, 0xb8, 0x8d, 0xf4, 0x7f, 0xe2, 0x7d, 0xeb, 0x17, 0xc2, 0xbc, 0x63, 0x42, 0x93, 0x94, 0xe4, 0x97, 0xbf, 0x97, 0xea, 0x02, 0x40, 0xac, 0xb6, 0xa5, 0x03, 0x4c, 0x6b, 0x4c, 0xb8, 0x8c, 0xf4, 0x66, 0x1b, 0x4e, 0x02, 0x45, 0xf9, 0xcd, 0xb6, 0x0f, 0x59, 0x09, 0x21, 0x03, 0x7e, 0x92, 0x1f, 0x3f, 0x40, 0x83, 0x50, 0xe3, 0xdc, 0x9e, 0x6f, 0x65, 0xc5, 0xbd, 0x2c, 0x7d, 0xab, 0x74, 0x49, 0xc8, 0xa2, 0x3c, 0xab, 0xcb, 0x4d, 0x63, 0x73, 0x81, 0x2b, 0xb2, 0x1e, 0x00, 0x8f, 0x00, 0xb8, 0xd8, 0xb4, 0x5d, 0xc4, 0x3f, 0x3d, 0xa8, 0x4f, 0x4c, 0x72, 0x0e, 0x20, 0x17, 0x4b, 0xac, 0x14, 0x8f, 0xb2, 0xa5, 0x20, 0x41, 0x2b, 0xf7, 0x62, 0x25, 0x6a, 0xd6, 0x41, 0x26, 0x62, 0x10, 0xc1, 0xbc, 0x42, 0xac, 0x54, 0x1b, 0x75, 0x05, 0xd6, 0x53, 0xb1, 0x7b, 0x84, 0x6a, 0x7b, 0x5b, 0x2a, 0x34, 0x6e, 0x43, 0x4b, 0x43, 0xcc, 0x6c, 0xdb, 0x1d, 0x02, 0x34, 0x7f, 0xd1, 0xe8, 0xfd, 0x42, 0x2c, 0xd9, 0x14, 0xdb, 0xd6, 0xf4, 0xad, 0xb5, 0xe4, 0xac, 0xdd, 0x7e, 0xb5, 0x4c, 0x3f, 0x59, 0x24, 0xfa, 0x04, 0xd9, 0xb6, 0xd2, 0xb7, 0x7d, 0xf1, 0xfa, 0x13, 0xc0, 0x4d, 0xd5, 0xca, 0x3a, 0x4e, 0xa8, 0xdd, 0xa9, 0xfc, 0xcb, 0x06, 0xb2, 0xde, 0x4b, 0x2a, 0x86, 0xbb, 0x0d, 0x41, 0xb6, 0x3d, 0xfb, 0x49, 0xc8, 0xdf, 0x9a, 0x48, 0xe5, 0x68, 0x8a, 0xfc, 0x86, 0x9c, 0x79, 0x5a, 0x79, 0xc1, 0x09, 0x33, 0x53, 0xdc, 0x3d, 0xe9, 0x93, 0x7c, 0x5b, 0x72, 0xf7, 0xa0, 0x8a, 0x1f, 0x07, 0x6c, 0x38, 0x3c, 0x99, 0x0b, 0xe4, 0x4e, 0xa4, 0xbd, 0x41, 0x1f, 0x83, 0xa6, 0xd3 }; ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)), Bytes(priv_key, priv_key_len)); const uint8_t kExpectedPub[] = { 0x00, 0x00, 0x00, 0x01, 0x00, 0x61, 0x04, 0x5e, 0x06, 0x6b, 0x7b, 0xfd, 0x54, 0x01, 0xe0, 0xd2, 0xb5, 0x12, 0xce, 0x48, 0x16, 0x66, 0xb2, 0xdf, 0xfd, 0xa8, 0x38, 0x7c, 0x1f, 0x45, 0x1a, 0xb8, 0x21, 0x52, 0x17, 0x25, 0xbb, 0x0b, 0x00, 0xd4, 0xa1, 0xbc, 0x28, 0xd9, 0x08, 0x36, 0x98, 0xb2, 0x17, 0xd3, 0xb5, 0xad, 0xb6, 0x4e, 0x03, 0x5f, 0xd3, 0x66, 0x2c, 0x58, 0x1c, 0xcc, 0xc6, 0x23, 0xa4, 0xf9, 0xa2, 0x7e, 0xb0, 0xe4, 0xd3, 0x95, 0x41, 0x6f, 0xba, 0x23, 0x4a, 0x82, 0x93, 0x29, 0x73, 0x75, 0x38, 0x85, 0x64, 0x9c, 0xaa, 0x12, 0x6d, 0x7d, 0xcd, 0x52, 0x02, 0x91, 0x9f, 0xa9, 0xee, 0x4b, 0xfd, 0x68, 0x97, 0x40, 0xdc, 0x00, 0x61, 0x04, 0x14, 0x16, 0x39, 0xf9, 0x63, 0x66, 0x94, 0x03, 0xfa, 0x0b, 0xbf, 0xca, 0x5a, 0x39, 0x9f, 0x27, 0x5b, 0x3f, 0x69, 0x7a, 0xc9, 0xf7, 0x25, 0x7c, 0x84, 0x9e, 0x1d, 0x61, 0x5a, 0x24, 0x53, 0xf2, 0x4a, 0x9d, 0xe9, 0x05, 0x53, 0xfd, 0x12, 0x01, 0x2d, 0x9a, 0x69, 0x50, 0x74, 0x82, 0xa3, 0x45, 0x73, 0xdc, 0x34, 0x36, 0x31, 0x44, 0x07, 0x0c, 0xda, 0x13, 0xbe, 0x94, 0x37, 0x65, 0xa0, 0xab, 0x16, 0x52, 0x90, 0xe5, 0x8a, 0x03, 0xe5, 0x98, 0x79, 0x14, 0x79, 0xd5, 0x17, 0xee, 0xd4, 0xb8, 0xda, 0x77, 0x76, 0x03, 0x20, 0x2a, 0x7e, 0x3b, 0x76, 0x0b, 0x23, 0xb7, 0x72, 0x77, 0xb2, 0xeb, 0x00, 0x61, 0x04, 0x68, 0x18, 0x4d, 0x23, 0x23, 0xf4, 0x45, 0xb8, 0x81, 0x0d, 0xa4, 0x5d, 0x0b, 0x9e, 0x08, 0xfb, 0x45, 0xfb, 0x96, 0x29, 0x43, 0x2f, 0xab, 0x93, 0x04, 0x4c, 0x04, 0xb6, 0x5e, 0x27, 0xf5, 0x39, 0x66, 0x94, 0x15, 0x1d, 0xb1, 0x1c, 0x7c, 0x27, 0x6f, 0xa5, 0x19, 0x0c, 0x30, 0x12, 0xcc, 0x77, 0x7f, 0x10, 0xa9, 0x7c, 0xe4, 0x08, 0x77, 0x3c, 0xd3, 0x6f, 0xa4, 0xf4, 0xaf, 0xf1, 0x9d, 0x14, 0x1d, 0xd0, 0x02, 0x33, 0x50, 0x55, 0x00, 0x6a, 0x47, 0x96, 0xe1, 0x8b, 0x4e, 0x44, 0x41, 0xad, 0xb3, 0xea, 0x0d, 0x0d, 0xd5, 0x73, 0x8e, 0x62, 0x67, 0x8a, 0xb4, 0xe7, 0x5d, 0x17, 0xa9, 0x24}; ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)), Bytes(pub_key, pub_key_len)); } TEST(TrustTokenTest, KeyGenExp2VOPRF) { uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len; ASSERT_TRUE(TRUST_TOKEN_generate_key( TRUST_TOKEN_experiment_v2_voprf(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001)); ASSERT_EQ(52u, priv_key_len); ASSERT_EQ(101u, pub_key_len); const uint8_t kKeygenSecret[] = "SEED"; ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret( TRUST_TOKEN_experiment_v2_voprf(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret, sizeof(kKeygenSecret) - 1)); const uint8_t kExpectedPriv[] = { 0x00, 0x00, 0x00, 0x01, 0x0b, 0xe2, 0xc4, 0x73, 0x92, 0xe7, 0xf8, 0x3e, 0xba, 0xab, 0x85, 0xa7, 0x77, 0xd7, 0x0a, 0x02, 0xc5, 0x36, 0xfe, 0x62, 0xa3, 0xca, 0x01, 0x75, 0xc7, 0x62, 0x19, 0xc7, 0xf0, 0x30, 0xc5, 0x14, 0x60, 0x13, 0x97, 0x4f, 0x63, 0x05, 0x37, 0x92, 0x7b, 0x76, 0x8e, 0x9f, 0xd0, 0x1a, 0x74, 0x44 }; ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)), Bytes(priv_key, priv_key_len)); const uint8_t kExpectedPub[] = { 0x00, 0x00, 0x00, 0x01, 0x04, 0x2c, 0x9c, 0x11, 0xc1, 0xe5, 0x52, 0x59, 0x0b, 0x6d, 0x88, 0x8b, 0x6e, 0x28, 0xe8, 0xc5, 0xa3, 0xbe, 0x48, 0x18, 0xf7, 0x1d, 0x31, 0xcf, 0xa2, 0x6e, 0x2a, 0xd6, 0xcb, 0x83, 0x26, 0x04, 0xbd, 0x93, 0x67, 0xe4, 0x53, 0xf6, 0x11, 0x7d, 0x45, 0xe9, 0xfe, 0x27, 0x33, 0x90, 0xdb, 0x1b, 0xfc, 0x9b, 0x31, 0x4d, 0x39, 0x1f, 0x1f, 0x8c, 0x43, 0x06, 0x70, 0x2c, 0x84, 0xdc, 0x23, 0x18, 0xc7, 0x6a, 0x58, 0xcf, 0x9e, 0xc1, 0xfa, 0xf2, 0x30, 0xdd, 0xad, 0x62, 0x24, 0xde, 0x11, 0xc1, 0xba, 0x8d, 0xc3, 0x4f, 0xfb, 0xe5, 0xa5, 0xd4, 0x37, 0xba, 0x3b, 0x70, 0xc0, 0xc3, 0xef, 0x20, 0x43 }; ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)), Bytes(pub_key, pub_key_len)); } TEST(TrustTokenTest, KeyGenExp2PMB) { uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len; ASSERT_TRUE(TRUST_TOKEN_generate_key( TRUST_TOKEN_experiment_v2_pmb(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001)); ASSERT_EQ(292u, priv_key_len); ASSERT_EQ(295u, pub_key_len); const uint8_t kKeygenSecret[] = "SEED"; ASSERT_TRUE(TRUST_TOKEN_derive_key_from_secret( TRUST_TOKEN_experiment_v2_pmb(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0x0001, kKeygenSecret, sizeof(kKeygenSecret) - 1)); const uint8_t kExpectedPriv[] = { 0x00, 0x00, 0x00, 0x01, 0x1b, 0x74, 0xdc, 0xf0, 0xa9, 0xa7, 0x6c, 0xfb, 0x41, 0xef, 0xfa, 0x65, 0x52, 0xc9, 0x86, 0x4e, 0xfb, 0x16, 0x9d, 0xea, 0x62, 0x3f, 0x47, 0xab, 0x1f, 0x1b, 0x05, 0xf2, 0x4f, 0x05, 0xfe, 0x64, 0xb7, 0xe8, 0xcd, 0x2a, 0x10, 0xfa, 0xa2, 0x48, 0x3f, 0x0e, 0x8b, 0x94, 0x39, 0xf1, 0xe7, 0x53, 0xe9, 0x50, 0x29, 0xe2, 0xb7, 0x0e, 0xc0, 0x94, 0xa9, 0xd3, 0xef, 0x64, 0x10, 0x1d, 0x08, 0xd0, 0x60, 0xcb, 0x6d, 0x97, 0x68, 0xc7, 0x04, 0x92, 0x07, 0xb2, 0x22, 0x83, 0xf7, 0xd9, 0x9b, 0x2c, 0xf2, 0x52, 0x34, 0x0c, 0x42, 0x31, 0x47, 0x41, 0x19, 0xb9, 0xee, 0xfc, 0x46, 0xbd, 0x14, 0xce, 0x42, 0xd7, 0x43, 0xc8, 0x32, 0x3b, 0x24, 0xed, 0xdc, 0x69, 0xa3, 0x8e, 0x29, 0x01, 0xbe, 0xae, 0x24, 0x39, 0x14, 0xa7, 0x52, 0xe5, 0xd5, 0xff, 0x9a, 0xc4, 0x15, 0x79, 0x29, 0x4c, 0x9b, 0x4e, 0xfc, 0x61, 0xf2, 0x12, 0x6f, 0x4f, 0xd3, 0x96, 0x28, 0xb0, 0x79, 0xf0, 0x4e, 0x6e, 0x7d, 0x56, 0x19, 0x1b, 0xc2, 0xd7, 0xf9, 0x3a, 0x58, 0x06, 0xe5, 0xec, 0xa4, 0x33, 0x14, 0x1c, 0x78, 0x0c, 0x83, 0x94, 0x34, 0x22, 0x5a, 0x8e, 0x2e, 0xa1, 0x72, 0x4a, 0x03, 0x35, 0xfe, 0x46, 0x92, 0x41, 0x6b, 0xe6, 0x4b, 0x3f, 0xf0, 0xe7, 0x0b, 0xb5, 0xf3, 0x66, 0x6c, 0xc6, 0x14, 0xcf, 0xce, 0x32, 0x0a, 0x2c, 0x28, 0xba, 0x4e, 0xb9, 0x75, 0x4a, 0xa9, 0x2d, 0xb0, 0x8c, 0xd0, 0x62, 0x52, 0x29, 0x1f, 0x12, 0xfd, 0xfb, 0xd3, 0x2a, 0x36, 0x0f, 0x89, 0x32, 0x86, 0x25, 0x56, 0xb9, 0xe7, 0x3c, 0xeb, 0xb4, 0x84, 0x41, 0x2b, 0xa8, 0xf3, 0xa5, 0x3d, 0xfe, 0x56, 0x94, 0x5b, 0x74, 0xb3, 0x5b, 0x27, 0x3f, 0xe7, 0xcf, 0xe4, 0xf8, 0x15, 0x95, 0x2a, 0xd2, 0x5f, 0x92, 0xb4, 0x6a, 0x89, 0xa5, 0x54, 0xbd, 0x27, 0x5e, 0xeb, 0x43, 0x07, 0x9b, 0x2b, 0x8b, 0x22, 0x59, 0x13, 0x4b, 0x9c, 0x56, 0xd8, 0x63, 0xd9, 0xe6, 0x85, 0x15, 0x2c, 0x82, 0x52, 0x40, 0x8f, 0xb1, 0xe7, 0x56, 0x07, 0x98 }; ASSERT_EQ(Bytes(kExpectedPriv, sizeof(kExpectedPriv)), Bytes(priv_key, priv_key_len)); const uint8_t kExpectedPub[] = { 0x00, 0x00, 0x00, 0x01, 0x04, 0x48, 0xb1, 0x2d, 0xdd, 0x03, 0x32, 0xeb, 0x93, 0x31, 0x3d, 0x59, 0x74, 0xf0, 0xcf, 0xaa, 0xa5, 0x39, 0x5f, 0x53, 0xc4, 0x94, 0x98, 0xbe, 0x8f, 0x22, 0xd7, 0x30, 0xde, 0x1e, 0xb4, 0xf3, 0x32, 0x23, 0x90, 0x0b, 0xa6, 0x37, 0x4a, 0x4b, 0x44, 0xb3, 0x26, 0x52, 0x93, 0x7b, 0x4b, 0xa4, 0x79, 0xe8, 0x77, 0x6a, 0x19, 0x81, 0x2a, 0xdd, 0x91, 0xfb, 0x90, 0x8b, 0x24, 0xb5, 0xbe, 0x20, 0x2e, 0xe8, 0xbc, 0xd3, 0x83, 0x6c, 0xa8, 0xc5, 0xa1, 0x9a, 0x5b, 0x5e, 0x60, 0xda, 0x45, 0x2e, 0x31, 0x7f, 0x54, 0x0e, 0x14, 0x40, 0xd2, 0x4d, 0x40, 0x2e, 0x21, 0x79, 0xfc, 0x77, 0xdd, 0xc7, 0x2d, 0x04, 0xfe, 0xc6, 0xe3, 0xcf, 0x99, 0xef, 0x88, 0xab, 0x76, 0x86, 0x16, 0x14, 0xed, 0x72, 0x35, 0xa7, 0x05, 0x13, 0x9f, 0x2c, 0x53, 0xd5, 0xdf, 0x66, 0x75, 0x2e, 0x68, 0xdc, 0xd4, 0xc4, 0x00, 0x36, 0x08, 0x6d, 0xb7, 0x15, 0xf7, 0xe5, 0x32, 0x59, 0x81, 0x16, 0x57, 0xaa, 0x72, 0x06, 0xf0, 0xad, 0xd1, 0x85, 0xa0, 0x04, 0xd4, 0x11, 0x95, 0x1d, 0xac, 0x0b, 0x25, 0xbe, 0x59, 0xa2, 0xb3, 0x30, 0xee, 0x97, 0x07, 0x2a, 0x51, 0x15, 0xc1, 0x8d, 0xa8, 0xa6, 0x57, 0x9a, 0x4e, 0xbf, 0xd7, 0x2d, 0x35, 0x07, 0x6b, 0xd6, 0xc9, 0x3c, 0xe4, 0xcf, 0x0b, 0x14, 0x3e, 0x10, 0x51, 0x77, 0xd6, 0x84, 0x04, 0xbe, 0xd1, 0xd5, 0xa8, 0xf3, 0x9d, 0x1d, 0x4f, 0xc1, 0xc9, 0xf1, 0x0c, 0x6d, 0xb6, 0xcb, 0xe2, 0x05, 0x0b, 0x9c, 0x7a, 0x3a, 0x9a, 0x99, 0xe9, 0xa1, 0x93, 0xdc, 0x72, 0x2e, 0xef, 0xf3, 0x8d, 0xb9, 0x7b, 0xb0, 0x19, 0x24, 0x95, 0x0d, 0x68, 0xa7, 0xe0, 0xaa, 0x0b, 0xb1, 0xd1, 0xcc, 0x52, 0x14, 0xf9, 0x6c, 0x91, 0x59, 0xe4, 0xe1, 0x9b, 0xf9, 0x12, 0x39, 0xb1, 0x79, 0xbb, 0x21, 0x92, 0x00, 0xa4, 0x89, 0xf5, 0xbd, 0xd7, 0x89, 0x27, 0x40, 0xdc, 0xb1, 0x09, 0x38, 0x63, 0x91, 0x8c, 0xa5, 0x27, 0x27, 0x97, 0x39, 0x35, 0xfa, 0x1a, 0x8a, 0xa7, 0xe5, 0xc4, 0xd8, 0xbf, 0xe7, 0xbe }; ASSERT_EQ(Bytes(kExpectedPub, sizeof(kExpectedPub)), Bytes(pub_key, pub_key_len)); } // Test that H in |TRUST_TOKEN_experiment_v1| was computed correctly. TEST(TrustTokenTest, HExp1) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); ASSERT_TRUE(group); const uint8_t kHGen[] = "generator"; const uint8_t kHLabel[] = "PMBTokens Experiment V1 HashH"; bssl::UniquePtr expected_h(EC_POINT_new(group)); ASSERT_TRUE(expected_h); ASSERT_TRUE(ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( group, &expected_h->raw, kHLabel, sizeof(kHLabel), kHGen, sizeof(kHGen))); uint8_t expected_bytes[1 + 2 * EC_MAX_BYTES]; size_t expected_len = EC_POINT_point2oct(group, expected_h.get(), POINT_CONVERSION_UNCOMPRESSED, expected_bytes, sizeof(expected_bytes), nullptr); uint8_t h[97]; ASSERT_TRUE(pmbtoken_exp1_get_h_for_testing(h)); EXPECT_EQ(Bytes(h), Bytes(expected_bytes, expected_len)); } // Test that H in |TRUST_TOKEN_experiment_v2_pmb| was computed correctly. TEST(TrustTokenTest, HExp2) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); ASSERT_TRUE(group); const uint8_t kHGen[] = "generator"; const uint8_t kHLabel[] = "PMBTokens Experiment V2 HashH"; bssl::UniquePtr expected_h(EC_POINT_new(group)); ASSERT_TRUE(expected_h); ASSERT_TRUE(ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( group, &expected_h->raw, kHLabel, sizeof(kHLabel), kHGen, sizeof(kHGen))); uint8_t expected_bytes[1 + 2 * EC_MAX_BYTES]; size_t expected_len = EC_POINT_point2oct(group, expected_h.get(), POINT_CONVERSION_UNCOMPRESSED, expected_bytes, sizeof(expected_bytes), nullptr); uint8_t h[97]; ASSERT_TRUE(pmbtoken_exp2_get_h_for_testing(h)); EXPECT_EQ(Bytes(h), Bytes(expected_bytes, expected_len)); } // Test that H in |TRUST_TOKEN_pst_v1_pmb| was computed correctly. TEST(TrustTokenTest, HPST1) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); ASSERT_TRUE(group); const uint8_t kHGen[] = "generator"; const uint8_t kHLabel[] = "PMBTokens PST V1 HashH"; bssl::UniquePtr expected_h(EC_POINT_new(group)); ASSERT_TRUE(expected_h); ASSERT_TRUE(ec_hash_to_curve_p384_xmd_sha384_sswu( group, &expected_h->raw, kHLabel, sizeof(kHLabel), kHGen, sizeof(kHGen))); uint8_t expected_bytes[1 + 2 * EC_MAX_BYTES]; size_t expected_len = EC_POINT_point2oct(group, expected_h.get(), POINT_CONVERSION_UNCOMPRESSED, expected_bytes, sizeof(expected_bytes), nullptr); uint8_t h[97]; ASSERT_TRUE(pmbtoken_pst1_get_h_for_testing(h)); EXPECT_EQ(Bytes(h), Bytes(expected_bytes, expected_len)); } static int ec_point_uncompressed_from_compressed( const EC_GROUP *group, uint8_t out[EC_MAX_UNCOMPRESSED], size_t *out_len, const uint8_t *in, size_t len) { bssl::UniquePtr point(EC_POINT_new(group)); if (!point || !EC_POINT_oct2point(group, point.get(), in, len, nullptr)) { return 0; } *out_len = EC_POINT_point2oct(group, point.get(), POINT_CONVERSION_UNCOMPRESSED, out, EC_MAX_UNCOMPRESSED, nullptr); return 1; } static bool setup_voprf_test_key(const EC_GROUP *group, TRUST_TOKEN_ISSUER_KEY *out) { static const uint8_t kPrivateKey[] = { 0x05, 0x16, 0x46, 0xb9, 0xe6, 0xe7, 0xa7, 0x1a, 0xe2, 0x7c, 0x1e, 0x1d, 0x0b, 0x87, 0xb4, 0x38, 0x1d, 0xb6, 0xd3, 0x59, 0x5e, 0xee, 0xb1, 0xad, 0xb4, 0x15, 0x79, 0xad, 0xbf, 0x99, 0x2f, 0x42, 0x78, 0xf9, 0x01, 0x6e, 0xaf, 0xc9, 0x44, 0xed, 0xaa, 0x2b, 0x43, 0x18, 0x35, 0x81, 0x77, 0x9d }; static const uint8_t kPublicKey[] = { 0x03, 0x1d, 0x68, 0x96, 0x86, 0xc6, 0x11, 0x99, 0x1b, 0x55, 0xf1, 0xa1, 0xd8, 0xf4, 0x30, 0x5c, 0xcd, 0x6c, 0xb7, 0x19, 0x44, 0x6f, 0x66, 0x0a, 0x30, 0xdb, 0x61, 0xb7, 0xaa, 0x87, 0xb4, 0x6a, 0xcf, 0x59, 0xb7, 0xc0, 0xd4, 0xa9, 0x07, 0x7b, 0x3d, 0xa2, 0x1c, 0x25, 0xdd, 0x48, 0x22, 0x29, 0xa0 }; if (!ec_scalar_from_bytes(group, &out->xs, kPrivateKey, sizeof(kPrivateKey))) { return false; } bssl::UniquePtr pub(EC_POINT_new(group)); return pub && EC_POINT_oct2point(group, pub.get(), kPublicKey, sizeof(kPublicKey), nullptr) && ec_jacobian_to_affine(group, &out->pubs, &pub->raw); } TEST(TrustTokenTest, PSTV1VOPRFTestVector1) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); TRUST_TOKEN_ISSUER_KEY key; ASSERT_TRUE(setup_voprf_test_key(group, &key)); static const uint8_t kBlindedElement[] = { 0x02, 0xd3, 0x38, 0xc0, 0x5c, 0xbe, 0xcb, 0x82, 0xde, 0x13, 0xd6, 0x70, 0x0f, 0x09, 0xcb, 0x61, 0x19, 0x05, 0x43, 0xa7, 0xb7, 0xe2, 0xc6, 0xcd, 0x4f, 0xca, 0x56, 0x88, 0x7e, 0x56, 0x4e, 0xa8, 0x26, 0x53, 0xb2, 0x7f, 0xda, 0xd3, 0x83, 0x99, 0x5e, 0xa6, 0xd0, 0x2c, 0xf2, 0x6d, 0x0e, 0x24, 0xd9 }; static const uint8_t kEvaluatedElement[] = { 0x02, 0xa7, 0xbb, 0xa5, 0x89, 0xb3, 0xe8, 0x67, 0x2a, 0xa1, 0x9e, 0x8f, 0xd2, 0x58, 0xde, 0x2e, 0x6a, 0xae, 0x20, 0x10, 0x1c, 0x8d, 0x76, 0x12, 0x46, 0xde, 0x97, 0xa6, 0xb5, 0xee, 0x9c, 0xf1, 0x05, 0xfe, 0xbc, 0xe4, 0x32, 0x7a, 0x32, 0x62, 0x55, 0xa3, 0xc6, 0x04, 0xf6, 0x3f, 0x60, 0x0e, 0xf6 }; static const uint8_t kProof[] = { 0xbf, 0xc6, 0xcf, 0x38, 0x59, 0x12, 0x7f, 0x5f, 0xe2, 0x55, 0x48, 0x85, 0x98, 0x56, 0xd6, 0xb7, 0xfa, 0x1c, 0x74, 0x59, 0xf0, 0xba, 0x57, 0x12, 0xa8, 0x06, 0xfc, 0x09, 0x1a, 0x30, 0x00, 0xc4, 0x2d, 0x8b, 0xa3, 0x4f, 0xf4, 0x5f, 0x32, 0xa5, 0x2e, 0x40, 0x53, 0x3e, 0xfd, 0x2a, 0x03, 0xbc, 0x87, 0xf3, 0xbf, 0x4f, 0x9f, 0x58, 0x02, 0x82, 0x97, 0xcc, 0xb9, 0xcc, 0xb1, 0x8a, 0xe7, 0x18, 0x2b, 0xcd, 0x1e, 0xf2, 0x39, 0xdf, 0x77, 0xe3, 0xbe, 0x65, 0xef, 0x14, 0x7f, 0x3a, 0xcf, 0x8b, 0xc9, 0xcb, 0xfc, 0x55, 0x24, 0xb7, 0x02, 0x26, 0x34, 0x14, 0xf0, 0x43, 0xe3, 0xb7, 0xca, 0x2e }; static const uint8_t kProofScalar[] = { 0x80, 0x3d, 0x95, 0x5f, 0x0e, 0x07, 0x3a, 0x04, 0xaa, 0x5d, 0x92, 0xb3, 0xfb, 0x73, 0x9f, 0x56, 0xf9, 0xdb, 0x00, 0x12, 0x66, 0x67, 0x7f, 0x62, 0xc0, 0x95, 0x02, 0x1d, 0xb0, 0x18, 0xcd, 0x8c, 0xbb, 0x55, 0x94, 0x1d, 0x40, 0x73, 0x69, 0x8c, 0xe4, 0x5c, 0x40, 0x5d, 0x13, 0x48, 0xb7, 0xb1 }; uint8_t blinded_buf[EC_MAX_UNCOMPRESSED]; size_t blinded_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, blinded_buf, &blinded_len, kBlindedElement, sizeof(kBlindedElement))); CBS sign_input; CBS_init(&sign_input, blinded_buf, blinded_len); bssl::ScopedCBB response; ASSERT_TRUE(CBB_init(response.get(), 0)); ASSERT_TRUE(voprf_pst1_sign_with_proof_scalar_for_testing( &key, response.get(), &sign_input, /*num_requested=*/1, /*num_to_issue=*/1, /*private_metadata=*/0, kProofScalar, sizeof(kProofScalar))); uint8_t evaluated_buf[EC_MAX_UNCOMPRESSED]; size_t evaluated_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, evaluated_buf, &evaluated_len, kEvaluatedElement, sizeof(kEvaluatedElement))); bssl::ScopedCBB expected_response; ASSERT_TRUE(CBB_init(expected_response.get(), 0)); ASSERT_TRUE( CBB_add_bytes(expected_response.get(), evaluated_buf, evaluated_len)); ASSERT_TRUE(CBB_add_u16(expected_response.get(), sizeof(kProof))); ASSERT_TRUE(CBB_add_bytes(expected_response.get(), kProof, sizeof(kProof))); ASSERT_TRUE(CBB_flush(expected_response.get())); ASSERT_EQ(Bytes(CBB_data(expected_response.get()), CBB_len(expected_response.get())), Bytes(CBB_data(response.get()), CBB_len(response.get()))); } TEST(TrustTokenTest, PSTV1VOPRFTestVector2) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); TRUST_TOKEN_ISSUER_KEY key; ASSERT_TRUE(setup_voprf_test_key(group, &key)); static const uint8_t kBlindedElement[] = { 0x02, 0xf2, 0x74, 0x69, 0xe0, 0x59, 0x88, 0x6f, 0x22, 0x1b, 0xe5, 0xf2, 0xcc, 0xa0, 0x3d, 0x2b, 0xdc, 0x61, 0xe5, 0x52, 0x21, 0x72, 0x1c, 0x3b, 0x3e, 0x56, 0xfc, 0x01, 0x2e, 0x36, 0xd3, 0x1a, 0xe5, 0xf8, 0xdc, 0x05, 0x81, 0x09, 0x59, 0x15, 0x56, 0xa6, 0xdb, 0xd3, 0xa8, 0xc6, 0x9c, 0x43, 0x3b }; static const uint8_t kEvaluatedElement[] = { 0x03, 0xf1, 0x6f, 0x90, 0x39, 0x47, 0x03, 0x54, 0x00, 0xe9, 0x6b, 0x7f, 0x53, 0x1a, 0x38, 0xd4, 0xa0, 0x7a, 0xc8, 0x9a, 0x80, 0xf8, 0x9d, 0x86, 0xa1, 0xbf, 0x08, 0x9c, 0x52, 0x5a, 0x92, 0xc7, 0xf4, 0x73, 0x37, 0x29, 0xca, 0x30, 0xc5, 0x6c, 0xe7, 0x8b, 0x1a, 0xb4, 0xf7, 0xd9, 0x2d, 0xb8, 0xb4 }; static const uint8_t kProof[] = { 0xd0, 0x05, 0xd6, 0xda, 0xaa, 0xd7, 0x57, 0x14, 0x14, 0xc1, 0xe0, 0xc7, 0x5f, 0x7e, 0x57, 0xf2, 0x11, 0x3c, 0xa9, 0xf4, 0x60, 0x4e, 0x84, 0xbc, 0x90, 0xf9, 0xbe, 0x52, 0xda, 0x89, 0x6f, 0xff, 0x3b, 0xee, 0x49, 0x6d, 0xcd, 0xe2, 0xa5, 0x78, 0xae, 0x9d, 0xf3, 0x15, 0x03, 0x25, 0x85, 0xf8, 0x01, 0xfb, 0x21, 0xc6, 0x08, 0x0a, 0xc0, 0x56, 0x72, 0xb2, 0x91, 0xe5, 0x75, 0xa4, 0x02, 0x95, 0xb3, 0x06, 0xd9, 0x67, 0x71, 0x7b, 0x28, 0xe0, 0x8f, 0xcc, 0x8a, 0xd1, 0xca, 0xb4, 0x78, 0x45, 0xd1, 0x6a, 0xf7, 0x3b, 0x3e, 0x64, 0x3d, 0xdc, 0xc1, 0x91, 0x20, 0x8e, 0x71, 0xc6, 0x46, 0x30 }; static const uint8_t kProofScalar[] = { 0x80, 0x3d, 0x95, 0x5f, 0x0e, 0x07, 0x3a, 0x04, 0xaa, 0x5d, 0x92, 0xb3, 0xfb, 0x73, 0x9f, 0x56, 0xf9, 0xdb, 0x00, 0x12, 0x66, 0x67, 0x7f, 0x62, 0xc0, 0x95, 0x02, 0x1d, 0xb0, 0x18, 0xcd, 0x8c, 0xbb, 0x55, 0x94, 0x1d, 0x40, 0x73, 0x69, 0x8c, 0xe4, 0x5c, 0x40, 0x5d, 0x13, 0x48, 0xb7, 0xb1 }; uint8_t blinded_buf[EC_MAX_UNCOMPRESSED]; size_t blinded_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, blinded_buf, &blinded_len, kBlindedElement, sizeof(kBlindedElement))); CBS sign_input; CBS_init(&sign_input, blinded_buf, blinded_len); bssl::ScopedCBB response; ASSERT_TRUE(CBB_init(response.get(), 0)); ASSERT_TRUE(voprf_pst1_sign_with_proof_scalar_for_testing( &key, response.get(), &sign_input, /*num_requested=*/1, /*num_to_issue=*/1, /*private_metadata=*/0, kProofScalar, sizeof(kProofScalar))); uint8_t evaluated_buf[EC_MAX_UNCOMPRESSED]; size_t evaluated_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, evaluated_buf, &evaluated_len, kEvaluatedElement, sizeof(kEvaluatedElement))); bssl::ScopedCBB expected_response; ASSERT_TRUE(CBB_init(expected_response.get(), 0)); ASSERT_TRUE( CBB_add_bytes(expected_response.get(), evaluated_buf, evaluated_len)); ASSERT_TRUE(CBB_add_u16(expected_response.get(), sizeof(kProof))); ASSERT_TRUE(CBB_add_bytes(expected_response.get(), kProof, sizeof(kProof))); ASSERT_TRUE(CBB_flush(expected_response.get())); ASSERT_EQ(Bytes(CBB_data(expected_response.get()), CBB_len(expected_response.get())), Bytes(CBB_data(response.get()), CBB_len(response.get()))); } TEST(TrustTokenTest, PSTV1VOPRFTestVector3) { const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); TRUST_TOKEN_ISSUER_KEY key; ASSERT_TRUE(setup_voprf_test_key(group, &key)); static const uint8_t kBlindedElement1[] = { 0x02, 0xd3, 0x38, 0xc0, 0x5c, 0xbe, 0xcb, 0x82, 0xde, 0x13, 0xd6, 0x70, 0x0f, 0x09, 0xcb, 0x61, 0x19, 0x05, 0x43, 0xa7, 0xb7, 0xe2, 0xc6, 0xcd, 0x4f, 0xca, 0x56, 0x88, 0x7e, 0x56, 0x4e, 0xa8, 0x26, 0x53, 0xb2, 0x7f, 0xda, 0xd3, 0x83, 0x99, 0x5e, 0xa6, 0xd0, 0x2c, 0xf2, 0x6d, 0x0e, 0x24, 0xd9 }; static const uint8_t kBlindedElement2[] = { 0x02, 0xfa, 0x02, 0x47, 0x0d, 0x7f, 0x15, 0x10, 0x18, 0xb4, 0x1e, 0x82, 0x22, 0x3c, 0x32, 0xfa, 0xd8, 0x24, 0xde, 0x6a, 0xd4, 0xb5, 0xce, 0x9f, 0x8e, 0x9f, 0x98, 0x08, 0x3c, 0x9a, 0x72, 0x6d, 0xe9, 0xa1, 0xfc, 0x39, 0xd7, 0xa0, 0xcb, 0x6f, 0x4f, 0x18, 0x8d, 0xd9, 0xce, 0xa0, 0x14, 0x74, 0xcd }; static const uint8_t kEvaluatedElement1[] = { 0x02, 0xa7, 0xbb, 0xa5, 0x89, 0xb3, 0xe8, 0x67, 0x2a, 0xa1, 0x9e, 0x8f, 0xd2, 0x58, 0xde, 0x2e, 0x6a, 0xae, 0x20, 0x10, 0x1c, 0x8d, 0x76, 0x12, 0x46, 0xde, 0x97, 0xa6, 0xb5, 0xee, 0x9c, 0xf1, 0x05, 0xfe, 0xbc, 0xe4, 0x32, 0x7a, 0x32, 0x62, 0x55, 0xa3, 0xc6, 0x04, 0xf6, 0x3f, 0x60, 0x0e, 0xf6 }; static const uint8_t kEvaluatedElement2[] = { 0x02, 0x8e, 0x9e, 0x11, 0x56, 0x25, 0xff, 0x4c, 0x2f, 0x07, 0xbf, 0x87, 0xce, 0x3f, 0xd7, 0x3f, 0xc7, 0x79, 0x94, 0xa7, 0xa0, 0xc1, 0xdf, 0x03, 0xd2, 0xa6, 0x30, 0xa3, 0xd8, 0x45, 0x93, 0x0e, 0x2e, 0x63, 0xa1, 0x65, 0xb1, 0x14, 0xd9, 0x8f, 0xe3, 0x4e, 0x61, 0xb6, 0x8d, 0x23, 0xc0, 0xb5, 0x0a }; static const uint8_t kProof[] = { 0x6d, 0x8d, 0xcb, 0xd2, 0xfc, 0x95, 0x55, 0x0a, 0x02, 0x21, 0x1f, 0xb7, 0x8a, 0xfd, 0x01, 0x39, 0x33, 0xf3, 0x07, 0xd2, 0x1e, 0x7d, 0x85, 0x5b, 0x0b, 0x1e, 0xd0, 0xaf, 0x78, 0x07, 0x6d, 0x81, 0x37, 0xad, 0x8b, 0x0a, 0x1b, 0xfa, 0x05, 0x67, 0x6d, 0x32, 0x52, 0x49, 0xc1, 0xdb, 0xb9, 0xa5, 0x2b, 0xd8, 0x1b, 0x1c, 0x2b, 0x7b, 0x0e, 0xfc, 0x77, 0xcf, 0x7b, 0x27, 0x8e, 0x1c, 0x94, 0x7f, 0x62, 0x83, 0xf1, 0xd4, 0xc5, 0x13, 0x05, 0x3f, 0xc0, 0xad, 0x19, 0xe0, 0x26, 0xfb, 0x0c, 0x30, 0x65, 0x4b, 0x53, 0xd9, 0xce, 0xa4, 0xb8, 0x7b, 0x03, 0x72, 0x71, 0xb5, 0xd2, 0xe2, 0xd0, 0xea }; static const uint8_t kProofScalar[] = { 0xa0, 0x97, 0xe7, 0x22, 0xed, 0x24, 0x27, 0xde, 0x86, 0x96, 0x69, 0x10, 0xac, 0xba, 0x9f, 0x5c, 0x35, 0x0e, 0x80, 0x40, 0xf8, 0x28, 0xbf, 0x6c, 0xec, 0xa2, 0x74, 0x05, 0x42, 0x0c, 0xdf, 0x3d, 0x63, 0xcb, 0x3a, 0xef, 0x00, 0x5f, 0x40, 0xba, 0x51, 0x94, 0x3c, 0x80, 0x26, 0x87, 0x79, 0x63 }; uint8_t blinded_buf[2*EC_MAX_UNCOMPRESSED]; size_t blinded_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, blinded_buf, &blinded_len, kBlindedElement1, sizeof(kBlindedElement1))); size_t offset = blinded_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, blinded_buf + offset, &blinded_len, kBlindedElement2, sizeof(kBlindedElement2))); CBS sign_input; CBS_init(&sign_input, blinded_buf, offset + blinded_len); bssl::ScopedCBB response; ASSERT_TRUE(CBB_init(response.get(), 0)); ASSERT_TRUE(voprf_pst1_sign_with_proof_scalar_for_testing( &key, response.get(), &sign_input, /*num_requested=*/2, /*num_to_issue=*/2, /*private_metadata=*/0, kProofScalar, sizeof(kProofScalar))); uint8_t evaluated_buf[2 * EC_MAX_UNCOMPRESSED]; size_t evaluated_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, evaluated_buf, &evaluated_len, kEvaluatedElement1, sizeof(kEvaluatedElement1))); offset = evaluated_len; ASSERT_TRUE(ec_point_uncompressed_from_compressed( group, evaluated_buf + offset, &evaluated_len, kEvaluatedElement2, sizeof(kEvaluatedElement2))); bssl::ScopedCBB expected_response; ASSERT_TRUE(CBB_init(expected_response.get(), 0)); ASSERT_TRUE(CBB_add_bytes(expected_response.get(), evaluated_buf, offset + evaluated_len)); ASSERT_TRUE(CBB_add_u16(expected_response.get(), sizeof(kProof))); ASSERT_TRUE(CBB_add_bytes(expected_response.get(), kProof, sizeof(kProof))); ASSERT_TRUE(CBB_flush(expected_response.get())); ASSERT_EQ(Bytes(CBB_data(expected_response.get()), CBB_len(expected_response.get())), Bytes(CBB_data(response.get()), CBB_len(response.get()))); } static std::vector AllMethods() { return { TRUST_TOKEN_experiment_v1(), TRUST_TOKEN_experiment_v2_voprf(), TRUST_TOKEN_experiment_v2_pmb(), TRUST_TOKEN_pst_v1_voprf(), TRUST_TOKEN_pst_v1_pmb() }; } class TrustTokenProtocolTestBase : public ::testing::Test { public: explicit TrustTokenProtocolTestBase(const TRUST_TOKEN_METHOD *method_arg, bool use_msg) : method_(method_arg), use_msg_(use_msg) {} // KeyID returns the key ID associated with key index |i|. static uint32_t KeyID(size_t i) { assert(i <= UINT32_MAX); // Use a different value from the indices to that we do not mix them up. return static_cast(7 + i); } const TRUST_TOKEN_METHOD *method() const { return method_; } bool use_message() const { return use_msg_; } protected: void SetupContexts() { client.reset(TRUST_TOKEN_CLIENT_new(method(), client_max_batchsize)); ASSERT_TRUE(client); issuer.reset(TRUST_TOKEN_ISSUER_new(method(), issuer_max_batchsize)); ASSERT_TRUE(issuer); for (size_t i = 0; i < method()->max_keys; i++) { uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len, key_index; ASSERT_TRUE(TRUST_TOKEN_generate_key( method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, KeyID(i))); ASSERT_TRUE(TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key, pub_key_len)); ASSERT_EQ(i, key_index); ASSERT_TRUE( TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)); } uint8_t public_key[32], private_key[64]; ED25519_keypair(public_key, private_key); bssl::UniquePtr priv(EVP_PKEY_new_raw_private_key( EVP_PKEY_ED25519, nullptr, private_key, 32)); ASSERT_TRUE(priv); bssl::UniquePtr pub( EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32)); ASSERT_TRUE(pub); TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get()); TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get()); RAND_bytes(metadata_key, sizeof(metadata_key)); ASSERT_TRUE(TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key, sizeof(metadata_key))); } const TRUST_TOKEN_METHOD *method_; bool use_msg_; uint16_t client_max_batchsize = 10; uint16_t issuer_max_batchsize = 10; bssl::UniquePtr client; bssl::UniquePtr issuer; uint8_t metadata_key[32]; }; class TrustTokenProtocolTest : public TrustTokenProtocolTestBase, public testing::WithParamInterface< std::tuple> { public: TrustTokenProtocolTest() : TrustTokenProtocolTestBase(std::get<0>(GetParam()), std::get<1>(GetParam())) {} }; INSTANTIATE_TEST_SUITE_P(TrustTokenAllProtocolTest, TrustTokenProtocolTest, testing::Combine(testing::ValuesIn(AllMethods()), testing::Bool())); TEST_P(TrustTokenProtocolTest, InvalidToken) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; size_t key_index; size_t tokens_issued; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 1, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 1)); } bssl::UniquePtr free_issue_msg(issue_msg); ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/KeyID(0), /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_msg(issue_resp); bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_TRUE(tokens); for (TRUST_TOKEN *token : tokens.get()) { // Corrupt the token. token->data[0] ^= 0x42; uint8_t *redeem_msg = NULL, *redeem_resp = NULL; ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption( client.get(), &redeem_msg, &msg_len, token, NULL, 0, 0)); bssl::UniquePtr free_redeem_msg(redeem_msg); uint32_t public_value; uint8_t private_value; TRUST_TOKEN *rtoken; uint8_t *client_data; size_t client_data_len; if (use_message()) { ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem_over_message( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage))); } else { ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len)); } bssl::UniquePtr free_redeem_resp(redeem_resp); } } TEST_P(TrustTokenProtocolTest, TruncatedIssuanceRequest) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); msg_len = 10; size_t tokens_issued; ASSERT_FALSE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/KeyID(0), /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_msg(issue_resp); } TEST_P(TrustTokenProtocolTest, TruncatedIssuanceResponse) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/KeyID(0), /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_msg(issue_resp); resp_len = 10; size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_FALSE(tokens); } TEST_P(TrustTokenProtocolTest, ExtraDataIssuanceResponse) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *request = NULL, *response = NULL; size_t request_len, response_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &request, &request_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &request, &request_len, 10)); } bssl::UniquePtr free_request(request); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue(issuer.get(), &response, &response_len, &tokens_issued, request, request_len, /*public_metadata=*/KeyID(0), /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_response(response); std::vector response2(response, response + response_len); response2.push_back(0); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, response2.data(), response2.size())); ASSERT_FALSE(tokens); } TEST_P(TrustTokenProtocolTest, TruncatedRedemptionRequest) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/KeyID(0), /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_msg(issue_resp); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_TRUE(tokens); for (TRUST_TOKEN *token : tokens.get()) { const uint8_t kClientData[] = "\x70TEST CLIENT DATA"; uint64_t kRedemptionTime = (method()->has_srr ? 13374242 : 0); uint8_t *redeem_msg = NULL; ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption( client.get(), &redeem_msg, &msg_len, token, kClientData, sizeof(kClientData) - 1, kRedemptionTime)); bssl::UniquePtr free_redeem_msg(redeem_msg); msg_len = 10; uint32_t public_value; uint8_t private_value; TRUST_TOKEN *rtoken; uint8_t *client_data; size_t client_data_len; if (use_message()) { ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem_over_message( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage))); } else { ASSERT_FALSE(TRUST_TOKEN_ISSUER_redeem( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len)); } } } TEST_P(TrustTokenProtocolTest, IssuedWithBadKeyID) { client.reset(TRUST_TOKEN_CLIENT_new(method(), client_max_batchsize)); ASSERT_TRUE(client); issuer.reset(TRUST_TOKEN_ISSUER_new(method(), issuer_max_batchsize)); ASSERT_TRUE(issuer); // We configure the client and the issuer with different key IDs and test // that the client notices. const uint32_t kClientKeyID = 0; const uint32_t kIssuerKeyID = 42; uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len, key_index; ASSERT_TRUE(TRUST_TOKEN_generate_key( method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, kClientKeyID)); ASSERT_TRUE(TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key, pub_key_len)); ASSERT_EQ(0UL, key_index); ASSERT_TRUE(TRUST_TOKEN_generate_key( method(), priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, kIssuerKeyID)); ASSERT_TRUE(TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)); uint8_t public_key[32], private_key[64]; ED25519_keypair(public_key, private_key); bssl::UniquePtr priv( EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32)); ASSERT_TRUE(priv); bssl::UniquePtr pub( EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32)); ASSERT_TRUE(pub); TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get()); TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get()); RAND_bytes(metadata_key, sizeof(metadata_key)); ASSERT_TRUE(TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key, sizeof(metadata_key))); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/42, /*private_metadata=*/0, /*max_issuance=*/10)); bssl::UniquePtr free_msg(issue_resp); bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_FALSE(tokens); } class TrustTokenMetadataTest : public TrustTokenProtocolTestBase, public testing::WithParamInterface< std::tuple> { public: TrustTokenMetadataTest() : TrustTokenProtocolTestBase(std::get<0>(GetParam()), std::get<1>(GetParam())) {} int public_metadata() { return std::get<2>(GetParam()); } bool private_metadata() { return std::get<3>(GetParam()); } }; TEST_P(TrustTokenMetadataTest, SetAndGetMetadata) { ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; bool result = TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, public_metadata(), private_metadata(), /*max_issuance=*/1); if (!method()->has_private_metadata && private_metadata()) { ASSERT_FALSE(result); return; } ASSERT_TRUE(result); bssl::UniquePtr free_msg(issue_resp); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_TRUE(tokens); EXPECT_EQ(1u, sk_TRUST_TOKEN_num(tokens.get())); for (TRUST_TOKEN *token : tokens.get()) { const uint8_t kClientData[] = "\x70TEST CLIENT DATA"; uint64_t kRedemptionTime = (method()->has_srr ? 13374242 : 0); uint8_t *redeem_msg = NULL; ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_redemption( client.get(), &redeem_msg, &msg_len, token, kClientData, sizeof(kClientData) - 1, kRedemptionTime)); bssl::UniquePtr free_redeem_msg(redeem_msg); uint32_t public_value; uint8_t private_value; TRUST_TOKEN *rtoken; uint8_t *client_data; size_t client_data_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_ISSUER_redeem_over_message( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_ISSUER_redeem( issuer.get(), &public_value, &private_value, &rtoken, &client_data, &client_data_len, redeem_msg, msg_len)); } bssl::UniquePtr free_client_data(client_data); bssl::UniquePtr free_rtoken(rtoken); ASSERT_EQ(Bytes(kClientData, sizeof(kClientData) - 1), Bytes(client_data, client_data_len)); ASSERT_EQ(public_value, static_cast(public_metadata())); ASSERT_EQ(private_value, private_metadata()); } } TEST_P(TrustTokenMetadataTest, TooManyRequests) { if (!method()->has_private_metadata && private_metadata()) { return; } issuer_max_batchsize = 1; ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, public_metadata(), private_metadata(), /*max_issuance=*/1)); bssl::UniquePtr free_msg(issue_resp); ASSERT_EQ(tokens_issued, issuer_max_batchsize); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); ASSERT_TRUE(tokens); ASSERT_EQ(sk_TRUST_TOKEN_num(tokens.get()), 1UL); } TEST_P(TrustTokenMetadataTest, TruncatedProof) { if (!method()->has_private_metadata && private_metadata()) { return; } ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, public_metadata(), private_metadata(), /*max_issuance=*/1)); bssl::UniquePtr free_msg(issue_resp); CBS real_response; CBS_init(&real_response, issue_resp, resp_len); uint16_t count; uint32_t parsed_public_metadata; bssl::ScopedCBB bad_response; ASSERT_TRUE(CBB_init(bad_response.get(), 0)); ASSERT_TRUE(CBS_get_u16(&real_response, &count)); ASSERT_TRUE(CBB_add_u16(bad_response.get(), count)); ASSERT_TRUE(CBS_get_u32(&real_response, &parsed_public_metadata)); ASSERT_TRUE(CBB_add_u32(bad_response.get(), parsed_public_metadata)); const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); size_t token_length = TRUST_TOKEN_NONCE_SIZE + 2 * (1 + 2 * BN_num_bytes(&group->field)); if (method() == TRUST_TOKEN_experiment_v1()) { token_length += 4; } if (method() == TRUST_TOKEN_experiment_v2_voprf() || method() == TRUST_TOKEN_pst_v1_voprf()) { token_length = 1 + 2 * BN_num_bytes(&group->field); } for (size_t i = 0; i < count; i++) { ASSERT_TRUE(CBB_add_bytes(bad_response.get(), CBS_data(&real_response), token_length)); ASSERT_TRUE(CBS_skip(&real_response, token_length)); } CBS tmp; ASSERT_TRUE(CBS_get_u16_length_prefixed(&real_response, &tmp)); CBB dleq; ASSERT_TRUE(CBB_add_u16_length_prefixed(bad_response.get(), &dleq)); ASSERT_TRUE(CBB_add_bytes(&dleq, CBS_data(&tmp), CBS_len(&tmp) - 2)); ASSERT_TRUE(CBB_flush(bad_response.get())); uint8_t *bad_buf; size_t bad_len; ASSERT_TRUE(CBB_finish(bad_response.get(), &bad_buf, &bad_len)); bssl::UniquePtr free_bad(bad_buf); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, bad_buf, bad_len)); ASSERT_FALSE(tokens); } TEST_P(TrustTokenMetadataTest, ExcessDataProof) { if (!method()->has_private_metadata && private_metadata()) { return; } ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, public_metadata(), private_metadata(), /*max_issuance=*/1)); bssl::UniquePtr free_msg(issue_resp); CBS real_response; CBS_init(&real_response, issue_resp, resp_len); uint16_t count; uint32_t parsed_public_metadata; bssl::ScopedCBB bad_response; ASSERT_TRUE(CBB_init(bad_response.get(), 0)); ASSERT_TRUE(CBS_get_u16(&real_response, &count)); ASSERT_TRUE(CBB_add_u16(bad_response.get(), count)); ASSERT_TRUE(CBS_get_u32(&real_response, &parsed_public_metadata)); ASSERT_TRUE(CBB_add_u32(bad_response.get(), parsed_public_metadata)); const EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); size_t token_length = TRUST_TOKEN_NONCE_SIZE + 2 * (1 + 2 * BN_num_bytes(&group->field)); if (method() == TRUST_TOKEN_experiment_v1()) { token_length += 4; } if (method() == TRUST_TOKEN_experiment_v2_voprf() || method() == TRUST_TOKEN_pst_v1_voprf()) { token_length = 1 + 2 * BN_num_bytes(&group->field); } for (size_t i = 0; i < count; i++) { ASSERT_TRUE(CBB_add_bytes(bad_response.get(), CBS_data(&real_response), token_length)); ASSERT_TRUE(CBS_skip(&real_response, token_length)); } CBS tmp; ASSERT_TRUE(CBS_get_u16_length_prefixed(&real_response, &tmp)); CBB dleq; ASSERT_TRUE(CBB_add_u16_length_prefixed(bad_response.get(), &dleq)); ASSERT_TRUE(CBB_add_bytes(&dleq, CBS_data(&tmp), CBS_len(&tmp))); ASSERT_TRUE(CBB_add_u16(&dleq, 42)); ASSERT_TRUE(CBB_flush(bad_response.get())); uint8_t *bad_buf; size_t bad_len; ASSERT_TRUE(CBB_finish(bad_response.get(), &bad_buf, &bad_len)); bssl::UniquePtr free_bad(bad_buf); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, bad_buf, bad_len)); ASSERT_FALSE(tokens); } INSTANTIATE_TEST_SUITE_P( TrustTokenAllMetadataTest, TrustTokenMetadataTest, testing::Combine(testing::ValuesIn(AllMethods()), testing::Bool(), testing::Values(TrustTokenProtocolTest::KeyID(0), TrustTokenProtocolTest::KeyID(1), TrustTokenProtocolTest::KeyID(2)), testing::Bool())); class TrustTokenBadKeyTest : public TrustTokenProtocolTestBase, public testing::WithParamInterface< std::tuple> { public: TrustTokenBadKeyTest() : TrustTokenProtocolTestBase(std::get<0>(GetParam()), std::get<1>(GetParam())) {} bool private_metadata() { return std::get<2>(GetParam()); } int corrupted_key() { return std::get<3>(GetParam()); } }; TEST_P(TrustTokenBadKeyTest, BadKey) { // For versions without private metadata, only corruptions of 'xs' (the 4th // entry in |scalars| below) result in a bad key, as the other scalars are // unused internally. if (!method()->has_private_metadata && (private_metadata() || corrupted_key() != 4)) { return; } ASSERT_NO_FATAL_FAILURE(SetupContexts()); uint8_t *issue_msg = NULL, *issue_resp = NULL; size_t msg_len, resp_len; if (use_message()) { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance_over_message( client.get(), &issue_msg, &msg_len, 10, kMessage, sizeof(kMessage))); } else { ASSERT_TRUE(TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, 10)); } bssl::UniquePtr free_issue_msg(issue_msg); struct trust_token_issuer_key_st *key = &issuer->keys[0]; EC_SCALAR *scalars[] = {&key->key.x0, &key->key.y0, &key->key.x1, &key->key.y1, &key->key.xs, &key->key.ys}; // Corrupt private key scalar. scalars[corrupted_key()]->bytes[0] ^= 42; size_t tokens_issued; ASSERT_TRUE(TRUST_TOKEN_ISSUER_issue( issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/7, private_metadata(), /*max_issuance=*/1)); bssl::UniquePtr free_msg(issue_resp); size_t key_index; bssl::UniquePtr tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); // If the unused private key is corrupted, then the DLEQ proof should succeed. if ((corrupted_key() / 2 == 0 && private_metadata() == true) || (corrupted_key() / 2 == 1 && private_metadata() == false)) { ASSERT_TRUE(tokens); } else { ASSERT_FALSE(tokens); } } INSTANTIATE_TEST_SUITE_P(TrustTokenAllBadKeyTest, TrustTokenBadKeyTest, testing::Combine(testing::ValuesIn(AllMethods()), testing::Bool(), testing::Bool(), testing::Values(0, 1, 2, 3, 4, 5))); } // namespace BSSL_NAMESPACE_END