// Copyright (c) 2021, Google Inc. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // testmodulewrapper is a modulewrapper binary that works with acvptool and // implements the primitives that BoringSSL's modulewrapper doesn't, so that // we have something that can exercise all the code in avcptool. package main import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/hmac" "crypto/rand" "crypto/sha256" "encoding/binary" "errors" "fmt" "io" "os" "golang.org/x/crypto/hkdf" "golang.org/x/crypto/xts" ) var handlers = map[string]func([][]byte) error{ "getConfig": getConfig, "KDF-counter": kdfCounter, "AES-XTS/encrypt": xtsEncrypt, "AES-XTS/decrypt": xtsDecrypt, "HKDF/SHA2-256": hkdfMAC, "hmacDRBG-reseed/SHA2-256": hmacDRBGReseed, "hmacDRBG-pr/SHA2-256": hmacDRBGPredictionResistance, "AES-CBC-CS3/encrypt": ctsEncrypt, "AES-CBC-CS3/decrypt": ctsDecrypt, } func getConfig(args [][]byte) error { if len(args) != 0 { return fmt.Errorf("getConfig received %d args", len(args)) } return reply([]byte(`[ { "algorithm": "KDF", "revision": "1.0", "capabilities": [{ "kdfMode": "counter", "macMode": [ "HMAC-SHA2-256" ], "supportedLengths": [{ "min": 8, "max": 4096, "increment": 8 }], "fixedDataOrder": [ "before fixed data" ], "counterLength": [ 32 ] }] }, { "algorithm": "ACVP-AES-XTS", "revision": "1.0", "direction": [ "encrypt", "decrypt" ], "keyLen": [ 128, 256 ], "payloadLen": [ 1024 ], "tweakMode": [ "number" ] }, { "algorithm": "hmacDRBG", "revision": "1.0", "predResistanceEnabled": [false, true], "reseedImplemented": true, "capabilities": [{ "mode": "SHA2-256", "derFuncEnabled": false, "entropyInputLen": [ 256 ], "nonceLen": [ 128 ], "persoStringLen": [ 256 ], "additionalInputLen": [ 256 ], "returnedBitsLen": 256 }] }, { "algorithm": "ACVP-AES-CBC-CS3", "revision": "1.0", "payloadLen": [{ "min": 128, "max": 2048, "increment": 8 }], "direction": [ "encrypt", "decrypt" ], "keyLen": [ 128, 256 ] } ]`)) } func kdfCounter(args [][]byte) error { if len(args) != 5 { return fmt.Errorf("KDF received %d args", len(args)) } outputBytes32, prf, counterLocation, key, counterBits32 := args[0], args[1], args[2], args[3], args[4] outputBytes := binary.LittleEndian.Uint32(outputBytes32) counterBits := binary.LittleEndian.Uint32(counterBits32) if !bytes.Equal(prf, []byte("HMAC-SHA2-256")) { return fmt.Errorf("KDF received unsupported PRF %q", string(prf)) } if !bytes.Equal(counterLocation, []byte("before fixed data")) { return fmt.Errorf("KDF received unsupported counter location %q", counterLocation) } if counterBits != 32 { return fmt.Errorf("KDF received unsupported counter length %d", counterBits) } if len(key) == 0 { key = make([]byte, 32) rand.Reader.Read(key) } // See https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf section 5.1 if outputBytes+31 < outputBytes { return fmt.Errorf("KDF received excessive output length %d", outputBytes) } n := (outputBytes + 31) / 32 result := make([]byte, 0, 32*n) mac := hmac.New(sha256.New, key) var input [4 + 8]byte var digest []byte rand.Reader.Read(input[4:]) for i := uint32(1); i <= n; i++ { mac.Reset() binary.BigEndian.PutUint32(input[:4], i) mac.Write(input[:]) digest = mac.Sum(digest[:0]) result = append(result, digest...) } return reply(key, input[4:], result[:outputBytes]) } func reply(responses ...[]byte) error { if len(responses) > maxArgs { return fmt.Errorf("%d responses is too many", len(responses)) } var lengths [4 * (1 + maxArgs)]byte binary.LittleEndian.PutUint32(lengths[:4], uint32(len(responses))) for i, response := range responses { binary.LittleEndian.PutUint32(lengths[4*(i+1):4*(i+2)], uint32(len(response))) } lengthsLength := (1 + len(responses)) * 4 if n, err := os.Stdout.Write(lengths[:lengthsLength]); n != lengthsLength || err != nil { return fmt.Errorf("write failed: %s", err) } for _, response := range responses { if n, err := os.Stdout.Write(response); n != len(response) || err != nil { return fmt.Errorf("write failed: %s", err) } } return nil } func xtsEncrypt(args [][]byte) error { return doXTS(args, false) } func xtsDecrypt(args [][]byte) error { return doXTS(args, true) } func doXTS(args [][]byte, decrypt bool) error { if len(args) != 3 { return fmt.Errorf("XTS received %d args, wanted 3", len(args)) } key := args[0] msg := args[1] tweak := args[2] if len(msg)%16 != 0 { return fmt.Errorf("XTS received %d-byte msg, need multiple of 16", len(msg)) } if len(tweak) != 16 { return fmt.Errorf("XTS received %d-byte tweak, wanted 16", len(tweak)) } var zeros [8]byte if !bytes.Equal(tweak[8:], zeros[:]) { return errors.New("XTS received tweak with invalid structure. Ensure that configuration specifies a 'number' tweak") } sectorNum := binary.LittleEndian.Uint64(tweak[:8]) c, err := xts.NewCipher(aes.NewCipher, key) if err != nil { return err } if decrypt { c.Decrypt(msg, msg, sectorNum) } else { c.Encrypt(msg, msg, sectorNum) } return reply(msg) } func hkdfMAC(args [][]byte) error { if len(args) != 4 { return fmt.Errorf("HKDF received %d args, wanted 4", len(args)) } key := args[0] salt := args[1] info := args[2] lengthBytes := args[3] if len(lengthBytes) != 4 { return fmt.Errorf("uint32 length was %d bytes long", len(lengthBytes)) } length := binary.LittleEndian.Uint32(lengthBytes) mac := hkdf.New(sha256.New, key, salt, info) ret := make([]byte, length) mac.Read(ret) return reply(ret) } func hmacDRBGReseed(args [][]byte) error { if len(args) != 8 { return fmt.Errorf("hmacDRBG received %d args, wanted 8", len(args)) } outLenBytes, entropy, personalisation, reseedAdditionalData, reseedEntropy, additionalData1, additionalData2, nonce := args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7] if len(outLenBytes) != 4 { return fmt.Errorf("uint32 length was %d bytes long", len(outLenBytes)) } outLen := binary.LittleEndian.Uint32(outLenBytes) out := make([]byte, outLen) drbg := NewHMACDRBG(entropy, nonce, personalisation) drbg.Reseed(reseedEntropy, reseedAdditionalData) drbg.Generate(out, additionalData1) drbg.Generate(out, additionalData2) return reply(out) } func hmacDRBGPredictionResistance(args [][]byte) error { if len(args) != 8 { return fmt.Errorf("hmacDRBG received %d args, wanted 8", len(args)) } outLenBytes, entropy, personalisation, additionalData1, entropy1, additionalData2, entropy2, nonce := args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7] if len(outLenBytes) != 4 { return fmt.Errorf("uint32 length was %d bytes long", len(outLenBytes)) } outLen := binary.LittleEndian.Uint32(outLenBytes) out := make([]byte, outLen) drbg := NewHMACDRBG(entropy, nonce, personalisation) drbg.Reseed(entropy1, additionalData1) drbg.Generate(out, nil) drbg.Reseed(entropy2, additionalData2) drbg.Generate(out, nil) return reply(out) } func swapFinalTwoAESBlocks(d []byte) { var blockNMinus1 [aes.BlockSize]byte copy(blockNMinus1[:], d[len(d)-2*aes.BlockSize:]) copy(d[len(d)-2*aes.BlockSize:], d[len(d)-aes.BlockSize:]) copy(d[len(d)-aes.BlockSize:], blockNMinus1[:]) } func roundUp(n, m int) int { return n + (m-(n%m))%m } func doCTSEncrypt(key, origPlaintext, iv []byte) []byte { // https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a-add.pdf if len(origPlaintext) < aes.BlockSize { panic("input too small") } plaintext := make([]byte, roundUp(len(origPlaintext), aes.BlockSize)) copy(plaintext, origPlaintext) block, err := aes.NewCipher(key) if err != nil { panic(err) } cbcEncryptor := cipher.NewCBCEncrypter(block, iv) cbcEncryptor.CryptBlocks(plaintext, plaintext) ciphertext := plaintext if len(origPlaintext) > aes.BlockSize { swapFinalTwoAESBlocks(ciphertext) if len(origPlaintext)%16 != 0 { // Truncate the ciphertext ciphertext = ciphertext[:len(ciphertext)-aes.BlockSize+(len(origPlaintext)%aes.BlockSize)] } } if len(ciphertext) != len(origPlaintext) { panic("internal error") } return ciphertext } func doCTSDecrypt(key, origCiphertext, iv []byte) []byte { if len(origCiphertext) < aes.BlockSize { panic("input too small") } ciphertext := make([]byte, roundUp(len(origCiphertext), aes.BlockSize)) copy(ciphertext, origCiphertext) if len(ciphertext) > aes.BlockSize { swapFinalTwoAESBlocks(ciphertext) } block, err := aes.NewCipher(key) if err != nil { panic(err) } cbcDecrypter := cipher.NewCBCDecrypter(block, iv) var plaintext []byte if overhang := len(origCiphertext) % aes.BlockSize; overhang == 0 { cbcDecrypter.CryptBlocks(ciphertext, ciphertext) plaintext = ciphertext } else { ciphertext, finalBlock := ciphertext[:len(ciphertext)-aes.BlockSize], ciphertext[len(ciphertext)-aes.BlockSize:] var plaintextFinalBlock [aes.BlockSize]byte block.Decrypt(plaintextFinalBlock[:], finalBlock) copy(ciphertext[len(ciphertext)-aes.BlockSize+overhang:], plaintextFinalBlock[overhang:]) plaintext = make([]byte, len(origCiphertext)) cbcDecrypter.CryptBlocks(plaintext, ciphertext) for i := 0; i < overhang; i++ { plaintextFinalBlock[i] ^= ciphertext[len(ciphertext)-aes.BlockSize+i] } copy(plaintext[len(ciphertext):], plaintextFinalBlock[:overhang]) } return plaintext } func ctsEncrypt(args [][]byte) error { if len(args) != 4 { return fmt.Errorf("ctsEncrypt received %d args, wanted 4", len(args)) } key, plaintext, iv, numIterations32 := args[0], args[1], args[2], args[3] if len(numIterations32) != 4 || binary.LittleEndian.Uint32(numIterations32) != 1 { return errors.New("only a single iteration supported for ctsEncrypt") } if len(plaintext) < aes.BlockSize { return fmt.Errorf("ctsEncrypt plaintext too short: %d bytes", len(plaintext)) } return reply(doCTSEncrypt(key, plaintext, iv)) } func ctsDecrypt(args [][]byte) error { if len(args) != 4 { return fmt.Errorf("ctsDecrypt received %d args, wanted 4", len(args)) } key, ciphertext, iv, numIterations32 := args[0], args[1], args[2], args[3] if len(numIterations32) != 4 || binary.LittleEndian.Uint32(numIterations32) != 1 { return errors.New("only a single iteration supported for ctsDecrypt") } if len(ciphertext) < aes.BlockSize { return errors.New("ctsDecrypt ciphertext too short") } return reply(doCTSDecrypt(key, ciphertext, iv)) } const ( maxArgs = 9 maxArgLength = 1 << 20 maxNameLength = 30 ) func main() { if err := do(); err != nil { fmt.Fprintf(os.Stderr, "%s.\n", err) os.Exit(1) } } func do() error { var nums [4 * (1 + maxArgs)]byte var argLengths [maxArgs]uint32 var args [maxArgs][]byte var argsData []byte for { if _, err := io.ReadFull(os.Stdin, nums[:8]); err != nil { return err } numArgs := binary.LittleEndian.Uint32(nums[:4]) if numArgs == 0 { return errors.New("Invalid, zero-argument operation requested") } else if numArgs > maxArgs { return fmt.Errorf("Operation requested with %d args, but %d is the limit", numArgs, maxArgs) } if numArgs > 1 { if _, err := io.ReadFull(os.Stdin, nums[8:4+4*numArgs]); err != nil { return err } } input := nums[4:] var need uint64 for i := uint32(0); i < numArgs; i++ { argLength := binary.LittleEndian.Uint32(input[:4]) if i == 0 && argLength > maxNameLength { return fmt.Errorf("Operation with name of length %d exceeded limit of %d", argLength, maxNameLength) } else if argLength > maxArgLength { return fmt.Errorf("Operation with argument of length %d exceeded limit of %d", argLength, maxArgLength) } need += uint64(argLength) argLengths[i] = argLength input = input[4:] } if need > uint64(cap(argsData)) { argsData = make([]byte, need) } else { argsData = argsData[:need] } if _, err := io.ReadFull(os.Stdin, argsData); err != nil { return err } input = argsData for i := uint32(0); i < numArgs; i++ { args[i] = input[:argLengths[i]] input = input[argLengths[i]:] } name := string(args[0]) if handler, ok := handlers[name]; !ok { return fmt.Errorf("unknown operation %q", name) } else { if err := handler(args[1:numArgs]); err != nil { return err } } } }