/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Provides information about the method used to transform attributes. The following is an example using the RETAIL domain:
* {
* "AttributeName": "demand", "Transformations": {"aggregation": "sum", "middlefill": "zero",
* "backfill": "zero"} } See Also:
* AWS
* API Reference
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The name of the attribute as specified in the schema. Amazon Forecast
* supports the target field of the target time series and the related time series
* datasets. For example, for the RETAIL domain, the target is
* demand.
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".
The method parameters (key-value pairs), which are a map of override * parameters. Specify these parameters to override the default values. Related * Time Series attributes do not accept aggregation parameters.
The * following list shows the parameters and their valid values for the "filling" * featurization method for a Target Time Series dataset. Default values are * bolded.
aggregation: sum,
* avg, first, min, max
frontfill: none
* middlefill: zero, nan (not a number),
* value, median, mean, min,
* max
backfill: zero,
* nan, value, median, mean,
* min, max
The following list shows * the parameters and their valid values for a Related Time Series * featurization method (there are no defaults):
* middlefill: zero, value,
* median, mean, min, max
backfill: zero, value,
* median, mean, min, max
futurefill: zero, value,
* median, mean, min, max
To set a filling method to a specific value, set the fill
* parameter to value and define the value in a corresponding
* _value parameter. For example, to set backfilling to a value of 2,
* include the following: "backfill": "value" and
* "backfill_value":"2".