/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Aws { template class AmazonWebServiceResult; namespace Utils { namespace Json { class JsonValue; } // namespace Json } // namespace Utils namespace ForecastService { namespace Model { class DescribePredictorResult { public: AWS_FORECASTSERVICE_API DescribePredictorResult(); AWS_FORECASTSERVICE_API DescribePredictorResult(const Aws::AmazonWebServiceResult& result); AWS_FORECASTSERVICE_API DescribePredictorResult& operator=(const Aws::AmazonWebServiceResult& result); /** *

The ARN of the predictor.

*/ inline const Aws::String& GetPredictorArn() const{ return m_predictorArn; } /** *

The ARN of the predictor.

*/ inline void SetPredictorArn(const Aws::String& value) { m_predictorArn = value; } /** *

The ARN of the predictor.

*/ inline void SetPredictorArn(Aws::String&& value) { m_predictorArn = std::move(value); } /** *

The ARN of the predictor.

*/ inline void SetPredictorArn(const char* value) { m_predictorArn.assign(value); } /** *

The ARN of the predictor.

*/ inline DescribePredictorResult& WithPredictorArn(const Aws::String& value) { SetPredictorArn(value); return *this;} /** *

The ARN of the predictor.

*/ inline DescribePredictorResult& WithPredictorArn(Aws::String&& value) { SetPredictorArn(std::move(value)); return *this;} /** *

The ARN of the predictor.

*/ inline DescribePredictorResult& WithPredictorArn(const char* value) { SetPredictorArn(value); return *this;} /** *

The name of the predictor.

*/ inline const Aws::String& GetPredictorName() const{ return m_predictorName; } /** *

The name of the predictor.

*/ inline void SetPredictorName(const Aws::String& value) { m_predictorName = value; } /** *

The name of the predictor.

*/ inline void SetPredictorName(Aws::String&& value) { m_predictorName = std::move(value); } /** *

The name of the predictor.

*/ inline void SetPredictorName(const char* value) { m_predictorName.assign(value); } /** *

The name of the predictor.

*/ inline DescribePredictorResult& WithPredictorName(const Aws::String& value) { SetPredictorName(value); return *this;} /** *

The name of the predictor.

*/ inline DescribePredictorResult& WithPredictorName(Aws::String&& value) { SetPredictorName(std::move(value)); return *this;} /** *

The name of the predictor.

*/ inline DescribePredictorResult& WithPredictorName(const char* value) { SetPredictorName(value); return *this;} /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline const Aws::String& GetAlgorithmArn() const{ return m_algorithmArn; } /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline void SetAlgorithmArn(const Aws::String& value) { m_algorithmArn = value; } /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline void SetAlgorithmArn(Aws::String&& value) { m_algorithmArn = std::move(value); } /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline void SetAlgorithmArn(const char* value) { m_algorithmArn.assign(value); } /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline DescribePredictorResult& WithAlgorithmArn(const Aws::String& value) { SetAlgorithmArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline DescribePredictorResult& WithAlgorithmArn(Aws::String&& value) { SetAlgorithmArn(std::move(value)); return *this;} /** *

The Amazon Resource Name (ARN) of the algorithm used for model training.

*/ inline DescribePredictorResult& WithAlgorithmArn(const char* value) { SetAlgorithmArn(value); return *this;} /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline const Aws::Vector& GetAutoMLAlgorithmArns() const{ return m_autoMLAlgorithmArns; } /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline void SetAutoMLAlgorithmArns(const Aws::Vector& value) { m_autoMLAlgorithmArns = value; } /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline void SetAutoMLAlgorithmArns(Aws::Vector&& value) { m_autoMLAlgorithmArns = std::move(value); } /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline DescribePredictorResult& WithAutoMLAlgorithmArns(const Aws::Vector& value) { SetAutoMLAlgorithmArns(value); return *this;} /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline DescribePredictorResult& WithAutoMLAlgorithmArns(Aws::Vector&& value) { SetAutoMLAlgorithmArns(std::move(value)); return *this;} /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline DescribePredictorResult& AddAutoMLAlgorithmArns(const Aws::String& value) { m_autoMLAlgorithmArns.push_back(value); return *this; } /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline DescribePredictorResult& AddAutoMLAlgorithmArns(Aws::String&& value) { m_autoMLAlgorithmArns.push_back(std::move(value)); return *this; } /** *

When PerformAutoML is specified, the ARN of the chosen * algorithm.

*/ inline DescribePredictorResult& AddAutoMLAlgorithmArns(const char* value) { m_autoMLAlgorithmArns.push_back(value); return *this; } /** *

The number of time-steps of the forecast. The forecast horizon is also called * the prediction length.

*/ inline int GetForecastHorizon() const{ return m_forecastHorizon; } /** *

The number of time-steps of the forecast. The forecast horizon is also called * the prediction length.

*/ inline void SetForecastHorizon(int value) { m_forecastHorizon = value; } /** *

The number of time-steps of the forecast. The forecast horizon is also called * the prediction length.

*/ inline DescribePredictorResult& WithForecastHorizon(int value) { SetForecastHorizon(value); return *this;} /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline const Aws::Vector& GetForecastTypes() const{ return m_forecastTypes; } /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline void SetForecastTypes(const Aws::Vector& value) { m_forecastTypes = value; } /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline void SetForecastTypes(Aws::Vector&& value) { m_forecastTypes = std::move(value); } /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline DescribePredictorResult& WithForecastTypes(const Aws::Vector& value) { SetForecastTypes(value); return *this;} /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline DescribePredictorResult& WithForecastTypes(Aws::Vector&& value) { SetForecastTypes(std::move(value)); return *this;} /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline DescribePredictorResult& AddForecastTypes(const Aws::String& value) { m_forecastTypes.push_back(value); return *this; } /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline DescribePredictorResult& AddForecastTypes(Aws::String&& value) { m_forecastTypes.push_back(std::move(value)); return *this; } /** *

The forecast types used during predictor training. Default value is * ["0.1","0.5","0.9"]

*/ inline DescribePredictorResult& AddForecastTypes(const char* value) { m_forecastTypes.push_back(value); return *this; } /** *

Whether the predictor is set to perform AutoML.

*/ inline bool GetPerformAutoML() const{ return m_performAutoML; } /** *

Whether the predictor is set to perform AutoML.

*/ inline void SetPerformAutoML(bool value) { m_performAutoML = value; } /** *

Whether the predictor is set to perform AutoML.

*/ inline DescribePredictorResult& WithPerformAutoML(bool value) { SetPerformAutoML(value); return *this;} /** *

The LatencyOptimized AutoML override strategy is only * available in private beta. Contact Amazon Web Services Support or your account * manager to learn more about access privileges.

The AutoML * strategy used to train the predictor. Unless LatencyOptimized is * specified, the AutoML strategy optimizes predictor accuracy.

This * parameter is only valid for predictors trained using AutoML.

*/ inline const AutoMLOverrideStrategy& GetAutoMLOverrideStrategy() const{ return m_autoMLOverrideStrategy; } /** *

The LatencyOptimized AutoML override strategy is only * available in private beta. Contact Amazon Web Services Support or your account * manager to learn more about access privileges.

The AutoML * strategy used to train the predictor. Unless LatencyOptimized is * specified, the AutoML strategy optimizes predictor accuracy.

This * parameter is only valid for predictors trained using AutoML.

*/ inline void SetAutoMLOverrideStrategy(const AutoMLOverrideStrategy& value) { m_autoMLOverrideStrategy = value; } /** *

The LatencyOptimized AutoML override strategy is only * available in private beta. Contact Amazon Web Services Support or your account * manager to learn more about access privileges.

The AutoML * strategy used to train the predictor. Unless LatencyOptimized is * specified, the AutoML strategy optimizes predictor accuracy.

This * parameter is only valid for predictors trained using AutoML.

*/ inline void SetAutoMLOverrideStrategy(AutoMLOverrideStrategy&& value) { m_autoMLOverrideStrategy = std::move(value); } /** *

The LatencyOptimized AutoML override strategy is only * available in private beta. Contact Amazon Web Services Support or your account * manager to learn more about access privileges.

The AutoML * strategy used to train the predictor. Unless LatencyOptimized is * specified, the AutoML strategy optimizes predictor accuracy.

This * parameter is only valid for predictors trained using AutoML.

*/ inline DescribePredictorResult& WithAutoMLOverrideStrategy(const AutoMLOverrideStrategy& value) { SetAutoMLOverrideStrategy(value); return *this;} /** *

The LatencyOptimized AutoML override strategy is only * available in private beta. Contact Amazon Web Services Support or your account * manager to learn more about access privileges.

The AutoML * strategy used to train the predictor. Unless LatencyOptimized is * specified, the AutoML strategy optimizes predictor accuracy.

This * parameter is only valid for predictors trained using AutoML.

*/ inline DescribePredictorResult& WithAutoMLOverrideStrategy(AutoMLOverrideStrategy&& value) { SetAutoMLOverrideStrategy(std::move(value)); return *this;} /** *

Whether the predictor is set to perform hyperparameter optimization * (HPO).

*/ inline bool GetPerformHPO() const{ return m_performHPO; } /** *

Whether the predictor is set to perform hyperparameter optimization * (HPO).

*/ inline void SetPerformHPO(bool value) { m_performHPO = value; } /** *

Whether the predictor is set to perform hyperparameter optimization * (HPO).

*/ inline DescribePredictorResult& WithPerformHPO(bool value) { SetPerformHPO(value); return *this;} /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline const Aws::Map& GetTrainingParameters() const{ return m_trainingParameters; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline void SetTrainingParameters(const Aws::Map& value) { m_trainingParameters = value; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline void SetTrainingParameters(Aws::Map&& value) { m_trainingParameters = std::move(value); } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& WithTrainingParameters(const Aws::Map& value) { SetTrainingParameters(value); return *this;} /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& WithTrainingParameters(Aws::Map&& value) { SetTrainingParameters(std::move(value)); return *this;} /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(const Aws::String& key, const Aws::String& value) { m_trainingParameters.emplace(key, value); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(Aws::String&& key, const Aws::String& value) { m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(const Aws::String& key, Aws::String&& value) { m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(Aws::String&& key, Aws::String&& value) { m_trainingParameters.emplace(std::move(key), std::move(value)); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(const char* key, Aws::String&& value) { m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(Aws::String&& key, const char* value) { m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

The default training parameters or overrides selected during model training. * When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values * for the chosen hyperparameters are returned. For more information, see * aws-forecast-choosing-recipes.

*/ inline DescribePredictorResult& AddTrainingParameters(const char* key, const char* value) { m_trainingParameters.emplace(key, value); return *this; } /** *

Used to override the default evaluation parameters of the specified * algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into * training data and testing data. The evaluation parameters define how to perform * the split and the number of iterations.

*/ inline const EvaluationParameters& GetEvaluationParameters() const{ return m_evaluationParameters; } /** *

Used to override the default evaluation parameters of the specified * algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into * training data and testing data. The evaluation parameters define how to perform * the split and the number of iterations.

*/ inline void SetEvaluationParameters(const EvaluationParameters& value) { m_evaluationParameters = value; } /** *

Used to override the default evaluation parameters of the specified * algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into * training data and testing data. The evaluation parameters define how to perform * the split and the number of iterations.

*/ inline void SetEvaluationParameters(EvaluationParameters&& value) { m_evaluationParameters = std::move(value); } /** *

Used to override the default evaluation parameters of the specified * algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into * training data and testing data. The evaluation parameters define how to perform * the split and the number of iterations.

*/ inline DescribePredictorResult& WithEvaluationParameters(const EvaluationParameters& value) { SetEvaluationParameters(value); return *this;} /** *

Used to override the default evaluation parameters of the specified * algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into * training data and testing data. The evaluation parameters define how to perform * the split and the number of iterations.

*/ inline DescribePredictorResult& WithEvaluationParameters(EvaluationParameters&& value) { SetEvaluationParameters(std::move(value)); return *this;} /** *

The hyperparameter override values for the algorithm.

*/ inline const HyperParameterTuningJobConfig& GetHPOConfig() const{ return m_hPOConfig; } /** *

The hyperparameter override values for the algorithm.

*/ inline void SetHPOConfig(const HyperParameterTuningJobConfig& value) { m_hPOConfig = value; } /** *

The hyperparameter override values for the algorithm.

*/ inline void SetHPOConfig(HyperParameterTuningJobConfig&& value) { m_hPOConfig = std::move(value); } /** *

The hyperparameter override values for the algorithm.

*/ inline DescribePredictorResult& WithHPOConfig(const HyperParameterTuningJobConfig& value) { SetHPOConfig(value); return *this;} /** *

The hyperparameter override values for the algorithm.

*/ inline DescribePredictorResult& WithHPOConfig(HyperParameterTuningJobConfig&& value) { SetHPOConfig(std::move(value)); return *this;} /** *

Describes the dataset group that contains the data to use to train the * predictor.

*/ inline const InputDataConfig& GetInputDataConfig() const{ return m_inputDataConfig; } /** *

Describes the dataset group that contains the data to use to train the * predictor.

*/ inline void SetInputDataConfig(const InputDataConfig& value) { m_inputDataConfig = value; } /** *

Describes the dataset group that contains the data to use to train the * predictor.

*/ inline void SetInputDataConfig(InputDataConfig&& value) { m_inputDataConfig = std::move(value); } /** *

Describes the dataset group that contains the data to use to train the * predictor.

*/ inline DescribePredictorResult& WithInputDataConfig(const InputDataConfig& value) { SetInputDataConfig(value); return *this;} /** *

Describes the dataset group that contains the data to use to train the * predictor.

*/ inline DescribePredictorResult& WithInputDataConfig(InputDataConfig&& value) { SetInputDataConfig(std::move(value)); return *this;} /** *

The featurization configuration.

*/ inline const FeaturizationConfig& GetFeaturizationConfig() const{ return m_featurizationConfig; } /** *

The featurization configuration.

*/ inline void SetFeaturizationConfig(const FeaturizationConfig& value) { m_featurizationConfig = value; } /** *

The featurization configuration.

*/ inline void SetFeaturizationConfig(FeaturizationConfig&& value) { m_featurizationConfig = std::move(value); } /** *

The featurization configuration.

*/ inline DescribePredictorResult& WithFeaturizationConfig(const FeaturizationConfig& value) { SetFeaturizationConfig(value); return *this;} /** *

The featurization configuration.

*/ inline DescribePredictorResult& WithFeaturizationConfig(FeaturizationConfig&& value) { SetFeaturizationConfig(std::move(value)); return *this;} /** *

An Key Management Service (KMS) key and the Identity and Access Management * (IAM) role that Amazon Forecast can assume to access the key.

*/ inline const EncryptionConfig& GetEncryptionConfig() const{ return m_encryptionConfig; } /** *

An Key Management Service (KMS) key and the Identity and Access Management * (IAM) role that Amazon Forecast can assume to access the key.

*/ inline void SetEncryptionConfig(const EncryptionConfig& value) { m_encryptionConfig = value; } /** *

An Key Management Service (KMS) key and the Identity and Access Management * (IAM) role that Amazon Forecast can assume to access the key.

*/ inline void SetEncryptionConfig(EncryptionConfig&& value) { m_encryptionConfig = std::move(value); } /** *

An Key Management Service (KMS) key and the Identity and Access Management * (IAM) role that Amazon Forecast can assume to access the key.

*/ inline DescribePredictorResult& WithEncryptionConfig(const EncryptionConfig& value) { SetEncryptionConfig(value); return *this;} /** *

An Key Management Service (KMS) key and the Identity and Access Management * (IAM) role that Amazon Forecast can assume to access the key.

*/ inline DescribePredictorResult& WithEncryptionConfig(EncryptionConfig&& value) { SetEncryptionConfig(std::move(value)); return *this;} /** *

Details on the the status and results of the backtests performed to evaluate * the accuracy of the predictor. You specify the number of backtests to perform * when you call the operation.

*/ inline const PredictorExecutionDetails& GetPredictorExecutionDetails() const{ return m_predictorExecutionDetails; } /** *

Details on the the status and results of the backtests performed to evaluate * the accuracy of the predictor. You specify the number of backtests to perform * when you call the operation.

*/ inline void SetPredictorExecutionDetails(const PredictorExecutionDetails& value) { m_predictorExecutionDetails = value; } /** *

Details on the the status and results of the backtests performed to evaluate * the accuracy of the predictor. You specify the number of backtests to perform * when you call the operation.

*/ inline void SetPredictorExecutionDetails(PredictorExecutionDetails&& value) { m_predictorExecutionDetails = std::move(value); } /** *

Details on the the status and results of the backtests performed to evaluate * the accuracy of the predictor. You specify the number of backtests to perform * when you call the operation.

*/ inline DescribePredictorResult& WithPredictorExecutionDetails(const PredictorExecutionDetails& value) { SetPredictorExecutionDetails(value); return *this;} /** *

Details on the the status and results of the backtests performed to evaluate * the accuracy of the predictor. You specify the number of backtests to perform * when you call the operation.

*/ inline DescribePredictorResult& WithPredictorExecutionDetails(PredictorExecutionDetails&& value) { SetPredictorExecutionDetails(std::move(value)); return *this;} /** *

The estimated time remaining in minutes for the predictor training job to * complete.

*/ inline long long GetEstimatedTimeRemainingInMinutes() const{ return m_estimatedTimeRemainingInMinutes; } /** *

The estimated time remaining in minutes for the predictor training job to * complete.

*/ inline void SetEstimatedTimeRemainingInMinutes(long long value) { m_estimatedTimeRemainingInMinutes = value; } /** *

The estimated time remaining in minutes for the predictor training job to * complete.

*/ inline DescribePredictorResult& WithEstimatedTimeRemainingInMinutes(long long value) { SetEstimatedTimeRemainingInMinutes(value); return *this;} /** *

Whether the predictor was created with CreateAutoPredictor.

*/ inline bool GetIsAutoPredictor() const{ return m_isAutoPredictor; } /** *

Whether the predictor was created with CreateAutoPredictor.

*/ inline void SetIsAutoPredictor(bool value) { m_isAutoPredictor = value; } /** *

Whether the predictor was created with CreateAutoPredictor.

*/ inline DescribePredictorResult& WithIsAutoPredictor(bool value) { SetIsAutoPredictor(value); return *this;} /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline const Aws::Vector& GetDatasetImportJobArns() const{ return m_datasetImportJobArns; } /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline void SetDatasetImportJobArns(const Aws::Vector& value) { m_datasetImportJobArns = value; } /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline void SetDatasetImportJobArns(Aws::Vector&& value) { m_datasetImportJobArns = std::move(value); } /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline DescribePredictorResult& WithDatasetImportJobArns(const Aws::Vector& value) { SetDatasetImportJobArns(value); return *this;} /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline DescribePredictorResult& WithDatasetImportJobArns(Aws::Vector&& value) { SetDatasetImportJobArns(std::move(value)); return *this;} /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline DescribePredictorResult& AddDatasetImportJobArns(const Aws::String& value) { m_datasetImportJobArns.push_back(value); return *this; } /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline DescribePredictorResult& AddDatasetImportJobArns(Aws::String&& value) { m_datasetImportJobArns.push_back(std::move(value)); return *this; } /** *

An array of the ARNs of the dataset import jobs used to import training data * for the predictor.

*/ inline DescribePredictorResult& AddDatasetImportJobArns(const char* value) { m_datasetImportJobArns.push_back(value); return *this; } /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline const Aws::String& GetStatus() const{ return m_status; } /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline void SetStatus(const Aws::String& value) { m_status = value; } /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline void SetStatus(Aws::String&& value) { m_status = std::move(value); } /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline void SetStatus(const char* value) { m_status.assign(value); } /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline DescribePredictorResult& WithStatus(const Aws::String& value) { SetStatus(value); return *this;} /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline DescribePredictorResult& WithStatus(Aws::String&& value) { SetStatus(std::move(value)); return *this;} /** *

The status of the predictor. States include:

  • * ACTIVE

  • CREATE_PENDING, * CREATE_IN_PROGRESS, CREATE_FAILED

  • * DELETE_PENDING, DELETE_IN_PROGRESS, * DELETE_FAILED

  • CREATE_STOPPING, * CREATE_STOPPED

The Status * of the predictor must be ACTIVE before you can use the predictor to * create a forecast.

*/ inline DescribePredictorResult& WithStatus(const char* value) { SetStatus(value); return *this;} /** *

If an error occurred, an informational message about the error.

*/ inline const Aws::String& GetMessage() const{ return m_message; } /** *

If an error occurred, an informational message about the error.

*/ inline void SetMessage(const Aws::String& value) { m_message = value; } /** *

If an error occurred, an informational message about the error.

*/ inline void SetMessage(Aws::String&& value) { m_message = std::move(value); } /** *

If an error occurred, an informational message about the error.

*/ inline void SetMessage(const char* value) { m_message.assign(value); } /** *

If an error occurred, an informational message about the error.

*/ inline DescribePredictorResult& WithMessage(const Aws::String& value) { SetMessage(value); return *this;} /** *

If an error occurred, an informational message about the error.

*/ inline DescribePredictorResult& WithMessage(Aws::String&& value) { SetMessage(std::move(value)); return *this;} /** *

If an error occurred, an informational message about the error.

*/ inline DescribePredictorResult& WithMessage(const char* value) { SetMessage(value); return *this;} /** *

When the model training task was created.

*/ inline const Aws::Utils::DateTime& GetCreationTime() const{ return m_creationTime; } /** *

When the model training task was created.

*/ inline void SetCreationTime(const Aws::Utils::DateTime& value) { m_creationTime = value; } /** *

When the model training task was created.

*/ inline void SetCreationTime(Aws::Utils::DateTime&& value) { m_creationTime = std::move(value); } /** *

When the model training task was created.

*/ inline DescribePredictorResult& WithCreationTime(const Aws::Utils::DateTime& value) { SetCreationTime(value); return *this;} /** *

When the model training task was created.

*/ inline DescribePredictorResult& WithCreationTime(Aws::Utils::DateTime&& value) { SetCreationTime(std::move(value)); return *this;} /** *

The last time the resource was modified. The timestamp depends on the status * of the job:

  • CREATE_PENDING - The * CreationTime.

  • CREATE_IN_PROGRESS - * The current timestamp.

  • CREATE_STOPPING - The * current timestamp.

  • CREATE_STOPPED - When the job * stopped.

  • ACTIVE or CREATE_FAILED - * When the job finished or failed.

*/ inline const Aws::Utils::DateTime& GetLastModificationTime() const{ return m_lastModificationTime; } /** *

The last time the resource was modified. The timestamp depends on the status * of the job:

  • CREATE_PENDING - The * CreationTime.

  • CREATE_IN_PROGRESS - * The current timestamp.

  • CREATE_STOPPING - The * current timestamp.

  • CREATE_STOPPED - When the job * stopped.

  • ACTIVE or CREATE_FAILED - * When the job finished or failed.

*/ inline void SetLastModificationTime(const Aws::Utils::DateTime& value) { m_lastModificationTime = value; } /** *

The last time the resource was modified. The timestamp depends on the status * of the job:

  • CREATE_PENDING - The * CreationTime.

  • CREATE_IN_PROGRESS - * The current timestamp.

  • CREATE_STOPPING - The * current timestamp.

  • CREATE_STOPPED - When the job * stopped.

  • ACTIVE or CREATE_FAILED - * When the job finished or failed.

*/ inline void SetLastModificationTime(Aws::Utils::DateTime&& value) { m_lastModificationTime = std::move(value); } /** *

The last time the resource was modified. The timestamp depends on the status * of the job:

  • CREATE_PENDING - The * CreationTime.

  • CREATE_IN_PROGRESS - * The current timestamp.

  • CREATE_STOPPING - The * current timestamp.

  • CREATE_STOPPED - When the job * stopped.

  • ACTIVE or CREATE_FAILED - * When the job finished or failed.

*/ inline DescribePredictorResult& WithLastModificationTime(const Aws::Utils::DateTime& value) { SetLastModificationTime(value); return *this;} /** *

The last time the resource was modified. The timestamp depends on the status * of the job:

  • CREATE_PENDING - The * CreationTime.

  • CREATE_IN_PROGRESS - * The current timestamp.

  • CREATE_STOPPING - The * current timestamp.

  • CREATE_STOPPED - When the job * stopped.

  • ACTIVE or CREATE_FAILED - * When the job finished or failed.

*/ inline DescribePredictorResult& WithLastModificationTime(Aws::Utils::DateTime&& value) { SetLastModificationTime(std::move(value)); return *this;} /** *

The accuracy metric used to optimize the predictor.

*/ inline const OptimizationMetric& GetOptimizationMetric() const{ return m_optimizationMetric; } /** *

The accuracy metric used to optimize the predictor.

*/ inline void SetOptimizationMetric(const OptimizationMetric& value) { m_optimizationMetric = value; } /** *

The accuracy metric used to optimize the predictor.

*/ inline void SetOptimizationMetric(OptimizationMetric&& value) { m_optimizationMetric = std::move(value); } /** *

The accuracy metric used to optimize the predictor.

*/ inline DescribePredictorResult& WithOptimizationMetric(const OptimizationMetric& value) { SetOptimizationMetric(value); return *this;} /** *

The accuracy metric used to optimize the predictor.

*/ inline DescribePredictorResult& WithOptimizationMetric(OptimizationMetric&& value) { SetOptimizationMetric(std::move(value)); return *this;} inline const Aws::String& GetRequestId() const{ return m_requestId; } inline void SetRequestId(const Aws::String& value) { m_requestId = value; } inline void SetRequestId(Aws::String&& value) { m_requestId = std::move(value); } inline void SetRequestId(const char* value) { m_requestId.assign(value); } inline DescribePredictorResult& WithRequestId(const Aws::String& value) { SetRequestId(value); return *this;} inline DescribePredictorResult& WithRequestId(Aws::String&& value) { SetRequestId(std::move(value)); return *this;} inline DescribePredictorResult& WithRequestId(const char* value) { SetRequestId(value); return *this;} private: Aws::String m_predictorArn; Aws::String m_predictorName; Aws::String m_algorithmArn; Aws::Vector m_autoMLAlgorithmArns; int m_forecastHorizon; Aws::Vector m_forecastTypes; bool m_performAutoML; AutoMLOverrideStrategy m_autoMLOverrideStrategy; bool m_performHPO; Aws::Map m_trainingParameters; EvaluationParameters m_evaluationParameters; HyperParameterTuningJobConfig m_hPOConfig; InputDataConfig m_inputDataConfig; FeaturizationConfig m_featurizationConfig; EncryptionConfig m_encryptionConfig; PredictorExecutionDetails m_predictorExecutionDetails; long long m_estimatedTimeRemainingInMinutes; bool m_isAutoPredictor; Aws::Vector m_datasetImportJobArns; Aws::String m_status; Aws::String m_message; Aws::Utils::DateTime m_creationTime; Aws::Utils::DateTime m_lastModificationTime; OptimizationMetric m_optimizationMetric; Aws::String m_requestId; }; } // namespace Model } // namespace ForecastService } // namespace Aws