/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace FraudDetector { namespace Model { /** *

The Account Takeover Insights (ATI) model performance score.

See * Also:

AWS * API Reference

*/ class ATIModelPerformance { public: AWS_FRAUDDETECTOR_API ATIModelPerformance(); AWS_FRAUDDETECTOR_API ATIModelPerformance(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API ATIModelPerformance& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The anomaly separation index (ASI) score. This metric summarizes the overall * ability of the model to separate anomalous activities from the normal behavior. * Depending on the business, a large fraction of these anomalous activities can be * malicious and correspond to the account takeover attacks. A model with no * separability power will have the lowest possible ASI score of 0.5, whereas the a * model with a high separability power will have the highest possible ASI score of * 1.0

*/ inline double GetAsi() const{ return m_asi; } /** *

The anomaly separation index (ASI) score. This metric summarizes the overall * ability of the model to separate anomalous activities from the normal behavior. * Depending on the business, a large fraction of these anomalous activities can be * malicious and correspond to the account takeover attacks. A model with no * separability power will have the lowest possible ASI score of 0.5, whereas the a * model with a high separability power will have the highest possible ASI score of * 1.0

*/ inline bool AsiHasBeenSet() const { return m_asiHasBeenSet; } /** *

The anomaly separation index (ASI) score. This metric summarizes the overall * ability of the model to separate anomalous activities from the normal behavior. * Depending on the business, a large fraction of these anomalous activities can be * malicious and correspond to the account takeover attacks. A model with no * separability power will have the lowest possible ASI score of 0.5, whereas the a * model with a high separability power will have the highest possible ASI score of * 1.0

*/ inline void SetAsi(double value) { m_asiHasBeenSet = true; m_asi = value; } /** *

The anomaly separation index (ASI) score. This metric summarizes the overall * ability of the model to separate anomalous activities from the normal behavior. * Depending on the business, a large fraction of these anomalous activities can be * malicious and correspond to the account takeover attacks. A model with no * separability power will have the lowest possible ASI score of 0.5, whereas the a * model with a high separability power will have the highest possible ASI score of * 1.0

*/ inline ATIModelPerformance& WithAsi(double value) { SetAsi(value); return *this;} private: double m_asi; bool m_asiHasBeenSet = false; }; } // namespace Model } // namespace FraudDetector } // namespace Aws