/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include namespace Aws { template class AmazonWebServiceResult; namespace Utils { namespace Json { class JsonValue; } // namespace Json } // namespace Utils namespace FraudDetector { namespace Model { class GetEventPredictionResult { public: AWS_FRAUDDETECTOR_API GetEventPredictionResult(); AWS_FRAUDDETECTOR_API GetEventPredictionResult(const Aws::AmazonWebServiceResult& result); AWS_FRAUDDETECTOR_API GetEventPredictionResult& operator=(const Aws::AmazonWebServiceResult& result); /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline const Aws::Vector& GetModelScores() const{ return m_modelScores; } /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline void SetModelScores(const Aws::Vector& value) { m_modelScores = value; } /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline void SetModelScores(Aws::Vector&& value) { m_modelScores = std::move(value); } /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline GetEventPredictionResult& WithModelScores(const Aws::Vector& value) { SetModelScores(value); return *this;} /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline GetEventPredictionResult& WithModelScores(Aws::Vector&& value) { SetModelScores(std::move(value)); return *this;} /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline GetEventPredictionResult& AddModelScores(const ModelScores& value) { m_modelScores.push_back(value); return *this; } /** *

The model scores. Amazon Fraud Detector generates model scores between 0 and * 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are * directly related to the false positive rate (FPR). For example, a score of 600 * corresponds to an estimated 10% false positive rate whereas a score of 900 * corresponds to an estimated 2% false positive rate.

*/ inline GetEventPredictionResult& AddModelScores(ModelScores&& value) { m_modelScores.push_back(std::move(value)); return *this; } /** *

The results from the rules.

*/ inline const Aws::Vector& GetRuleResults() const{ return m_ruleResults; } /** *

The results from the rules.

*/ inline void SetRuleResults(const Aws::Vector& value) { m_ruleResults = value; } /** *

The results from the rules.

*/ inline void SetRuleResults(Aws::Vector&& value) { m_ruleResults = std::move(value); } /** *

The results from the rules.

*/ inline GetEventPredictionResult& WithRuleResults(const Aws::Vector& value) { SetRuleResults(value); return *this;} /** *

The results from the rules.

*/ inline GetEventPredictionResult& WithRuleResults(Aws::Vector&& value) { SetRuleResults(std::move(value)); return *this;} /** *

The results from the rules.

*/ inline GetEventPredictionResult& AddRuleResults(const RuleResult& value) { m_ruleResults.push_back(value); return *this; } /** *

The results from the rules.

*/ inline GetEventPredictionResult& AddRuleResults(RuleResult&& value) { m_ruleResults.push_back(std::move(value)); return *this; } /** *

The model scores for Amazon SageMaker models.

*/ inline const Aws::Vector& GetExternalModelOutputs() const{ return m_externalModelOutputs; } /** *

The model scores for Amazon SageMaker models.

*/ inline void SetExternalModelOutputs(const Aws::Vector& value) { m_externalModelOutputs = value; } /** *

The model scores for Amazon SageMaker models.

*/ inline void SetExternalModelOutputs(Aws::Vector&& value) { m_externalModelOutputs = std::move(value); } /** *

The model scores for Amazon SageMaker models.

*/ inline GetEventPredictionResult& WithExternalModelOutputs(const Aws::Vector& value) { SetExternalModelOutputs(value); return *this;} /** *

The model scores for Amazon SageMaker models.

*/ inline GetEventPredictionResult& WithExternalModelOutputs(Aws::Vector&& value) { SetExternalModelOutputs(std::move(value)); return *this;} /** *

The model scores for Amazon SageMaker models.

*/ inline GetEventPredictionResult& AddExternalModelOutputs(const ExternalModelOutputs& value) { m_externalModelOutputs.push_back(value); return *this; } /** *

The model scores for Amazon SageMaker models.

*/ inline GetEventPredictionResult& AddExternalModelOutputs(ExternalModelOutputs&& value) { m_externalModelOutputs.push_back(std::move(value)); return *this; } inline const Aws::String& GetRequestId() const{ return m_requestId; } inline void SetRequestId(const Aws::String& value) { m_requestId = value; } inline void SetRequestId(Aws::String&& value) { m_requestId = std::move(value); } inline void SetRequestId(const char* value) { m_requestId.assign(value); } inline GetEventPredictionResult& WithRequestId(const Aws::String& value) { SetRequestId(value); return *this;} inline GetEventPredictionResult& WithRequestId(Aws::String&& value) { SetRequestId(std::move(value)); return *this;} inline GetEventPredictionResult& WithRequestId(const char* value) { SetRequestId(value); return *this;} private: Aws::Vector m_modelScores; Aws::Vector m_ruleResults; Aws::Vector m_externalModelOutputs; Aws::String m_requestId; }; } // namespace Model } // namespace FraudDetector } // namespace Aws