/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace FraudDetector { namespace Model { /** *

The performance metrics data points for Transaction Fraud Insights (TFI) * model.

See Also:

AWS * API Reference

*/ class TFIMetricDataPoint { public: AWS_FRAUDDETECTOR_API TFIMetricDataPoint(); AWS_FRAUDDETECTOR_API TFIMetricDataPoint(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API TFIMetricDataPoint& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The false positive rate. This is the percentage of total legitimate events * that are incorrectly predicted as fraud.

*/ inline double GetFpr() const{ return m_fpr; } /** *

The false positive rate. This is the percentage of total legitimate events * that are incorrectly predicted as fraud.

*/ inline bool FprHasBeenSet() const { return m_fprHasBeenSet; } /** *

The false positive rate. This is the percentage of total legitimate events * that are incorrectly predicted as fraud.

*/ inline void SetFpr(double value) { m_fprHasBeenSet = true; m_fpr = value; } /** *

The false positive rate. This is the percentage of total legitimate events * that are incorrectly predicted as fraud.

*/ inline TFIMetricDataPoint& WithFpr(double value) { SetFpr(value); return *this;} /** *

The percentage of fraud events correctly predicted as fraudulent as compared * to all events predicted as fraudulent.

*/ inline double GetPrecision() const{ return m_precision; } /** *

The percentage of fraud events correctly predicted as fraudulent as compared * to all events predicted as fraudulent.

*/ inline bool PrecisionHasBeenSet() const { return m_precisionHasBeenSet; } /** *

The percentage of fraud events correctly predicted as fraudulent as compared * to all events predicted as fraudulent.

*/ inline void SetPrecision(double value) { m_precisionHasBeenSet = true; m_precision = value; } /** *

The percentage of fraud events correctly predicted as fraudulent as compared * to all events predicted as fraudulent.

*/ inline TFIMetricDataPoint& WithPrecision(double value) { SetPrecision(value); return *this;} /** *

The true positive rate. This is the percentage of total fraud the model * detects. Also known as capture rate.

*/ inline double GetTpr() const{ return m_tpr; } /** *

The true positive rate. This is the percentage of total fraud the model * detects. Also known as capture rate.

*/ inline bool TprHasBeenSet() const { return m_tprHasBeenSet; } /** *

The true positive rate. This is the percentage of total fraud the model * detects. Also known as capture rate.

*/ inline void SetTpr(double value) { m_tprHasBeenSet = true; m_tpr = value; } /** *

The true positive rate. This is the percentage of total fraud the model * detects. Also known as capture rate.

*/ inline TFIMetricDataPoint& WithTpr(double value) { SetTpr(value); return *this;} /** *

The model threshold that specifies an acceptable fraud capture rate. For * example, a threshold of 500 means any model score 500 or above is labeled as * fraud.

*/ inline double GetThreshold() const{ return m_threshold; } /** *

The model threshold that specifies an acceptable fraud capture rate. For * example, a threshold of 500 means any model score 500 or above is labeled as * fraud.

*/ inline bool ThresholdHasBeenSet() const { return m_thresholdHasBeenSet; } /** *

The model threshold that specifies an acceptable fraud capture rate. For * example, a threshold of 500 means any model score 500 or above is labeled as * fraud.

*/ inline void SetThreshold(double value) { m_thresholdHasBeenSet = true; m_threshold = value; } /** *

The model threshold that specifies an acceptable fraud capture rate. For * example, a threshold of 500 means any model score 500 or above is labeled as * fraud.

*/ inline TFIMetricDataPoint& WithThreshold(double value) { SetThreshold(value); return *this;} private: double m_fpr; bool m_fprHasBeenSet = false; double m_precision; bool m_precisionHasBeenSet = false; double m_tpr; bool m_tprHasBeenSet = false; double m_threshold; bool m_thresholdHasBeenSet = false; }; } // namespace Model } // namespace FraudDetector } // namespace Aws