/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace FraudDetector { namespace Model { /** *

The training metric details.

See Also:

AWS * API Reference

*/ class TrainingMetrics { public: AWS_FRAUDDETECTOR_API TrainingMetrics(); AWS_FRAUDDETECTOR_API TrainingMetrics(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API TrainingMetrics& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.

*/ inline double GetAuc() const{ return m_auc; } /** *

The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.

*/ inline bool AucHasBeenSet() const { return m_aucHasBeenSet; } /** *

The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.

*/ inline void SetAuc(double value) { m_aucHasBeenSet = true; m_auc = value; } /** *

The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.

*/ inline TrainingMetrics& WithAuc(double value) { SetAuc(value); return *this;} /** *

The data points details.

*/ inline const Aws::Vector& GetMetricDataPoints() const{ return m_metricDataPoints; } /** *

The data points details.

*/ inline bool MetricDataPointsHasBeenSet() const { return m_metricDataPointsHasBeenSet; } /** *

The data points details.

*/ inline void SetMetricDataPoints(const Aws::Vector& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints = value; } /** *

The data points details.

*/ inline void SetMetricDataPoints(Aws::Vector&& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints = std::move(value); } /** *

The data points details.

*/ inline TrainingMetrics& WithMetricDataPoints(const Aws::Vector& value) { SetMetricDataPoints(value); return *this;} /** *

The data points details.

*/ inline TrainingMetrics& WithMetricDataPoints(Aws::Vector&& value) { SetMetricDataPoints(std::move(value)); return *this;} /** *

The data points details.

*/ inline TrainingMetrics& AddMetricDataPoints(const MetricDataPoint& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints.push_back(value); return *this; } /** *

The data points details.

*/ inline TrainingMetrics& AddMetricDataPoints(MetricDataPoint&& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints.push_back(std::move(value)); return *this; } private: double m_auc; bool m_aucHasBeenSet = false; Aws::Vector m_metricDataPoints; bool m_metricDataPointsHasBeenSet = false; }; } // namespace Model } // namespace FraudDetector } // namespace Aws