/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include The training metric details.See Also:
AWS
* API Reference
The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.
*/ inline double GetAuc() const{ return m_auc; } /** *The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.
*/ inline bool AucHasBeenSet() const { return m_aucHasBeenSet; } /** *The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.
*/ inline void SetAuc(double value) { m_aucHasBeenSet = true; m_auc = value; } /** *The area under the curve. This summarizes true positive rate (TPR) and false * positive rate (FPR) across all possible model score thresholds. A model with no * predictive power has an AUC of 0.5, whereas a perfect model has a score of * 1.0.
*/ inline TrainingMetrics& WithAuc(double value) { SetAuc(value); return *this;} /** *The data points details.
*/ inline const Aws::VectorThe data points details.
*/ inline bool MetricDataPointsHasBeenSet() const { return m_metricDataPointsHasBeenSet; } /** *The data points details.
*/ inline void SetMetricDataPoints(const Aws::VectorThe data points details.
*/ inline void SetMetricDataPoints(Aws::VectorThe data points details.
*/ inline TrainingMetrics& WithMetricDataPoints(const Aws::VectorThe data points details.
*/ inline TrainingMetrics& WithMetricDataPoints(Aws::VectorThe data points details.
*/ inline TrainingMetrics& AddMetricDataPoints(const MetricDataPoint& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints.push_back(value); return *this; } /** *The data points details.
*/ inline TrainingMetrics& AddMetricDataPoints(MetricDataPoint&& value) { m_metricDataPointsHasBeenSet = true; m_metricDataPoints.push_back(std::move(value)); return *this; } private: double m_auc; bool m_aucHasBeenSet = false; Aws::Vector