/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace FraudDetector { namespace Model { /** *

The training result details.

See Also:

AWS * API Reference

*/ class TrainingResultV2 { public: AWS_FRAUDDETECTOR_API TrainingResultV2(); AWS_FRAUDDETECTOR_API TrainingResultV2(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API TrainingResultV2& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_FRAUDDETECTOR_API Aws::Utils::Json::JsonValue Jsonize() const; inline const DataValidationMetrics& GetDataValidationMetrics() const{ return m_dataValidationMetrics; } inline bool DataValidationMetricsHasBeenSet() const { return m_dataValidationMetricsHasBeenSet; } inline void SetDataValidationMetrics(const DataValidationMetrics& value) { m_dataValidationMetricsHasBeenSet = true; m_dataValidationMetrics = value; } inline void SetDataValidationMetrics(DataValidationMetrics&& value) { m_dataValidationMetricsHasBeenSet = true; m_dataValidationMetrics = std::move(value); } inline TrainingResultV2& WithDataValidationMetrics(const DataValidationMetrics& value) { SetDataValidationMetrics(value); return *this;} inline TrainingResultV2& WithDataValidationMetrics(DataValidationMetrics&& value) { SetDataValidationMetrics(std::move(value)); return *this;} /** *

The training metric details.

*/ inline const TrainingMetricsV2& GetTrainingMetricsV2() const{ return m_trainingMetricsV2; } /** *

The training metric details.

*/ inline bool TrainingMetricsV2HasBeenSet() const { return m_trainingMetricsV2HasBeenSet; } /** *

The training metric details.

*/ inline void SetTrainingMetricsV2(const TrainingMetricsV2& value) { m_trainingMetricsV2HasBeenSet = true; m_trainingMetricsV2 = value; } /** *

The training metric details.

*/ inline void SetTrainingMetricsV2(TrainingMetricsV2&& value) { m_trainingMetricsV2HasBeenSet = true; m_trainingMetricsV2 = std::move(value); } /** *

The training metric details.

*/ inline TrainingResultV2& WithTrainingMetricsV2(const TrainingMetricsV2& value) { SetTrainingMetricsV2(value); return *this;} /** *

The training metric details.

*/ inline TrainingResultV2& WithTrainingMetricsV2(TrainingMetricsV2&& value) { SetTrainingMetricsV2(std::move(value)); return *this;} inline const VariableImportanceMetrics& GetVariableImportanceMetrics() const{ return m_variableImportanceMetrics; } inline bool VariableImportanceMetricsHasBeenSet() const { return m_variableImportanceMetricsHasBeenSet; } inline void SetVariableImportanceMetrics(const VariableImportanceMetrics& value) { m_variableImportanceMetricsHasBeenSet = true; m_variableImportanceMetrics = value; } inline void SetVariableImportanceMetrics(VariableImportanceMetrics&& value) { m_variableImportanceMetricsHasBeenSet = true; m_variableImportanceMetrics = std::move(value); } inline TrainingResultV2& WithVariableImportanceMetrics(const VariableImportanceMetrics& value) { SetVariableImportanceMetrics(value); return *this;} inline TrainingResultV2& WithVariableImportanceMetrics(VariableImportanceMetrics&& value) { SetVariableImportanceMetrics(std::move(value)); return *this;} /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline const AggregatedVariablesImportanceMetrics& GetAggregatedVariablesImportanceMetrics() const{ return m_aggregatedVariablesImportanceMetrics; } /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline bool AggregatedVariablesImportanceMetricsHasBeenSet() const { return m_aggregatedVariablesImportanceMetricsHasBeenSet; } /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline void SetAggregatedVariablesImportanceMetrics(const AggregatedVariablesImportanceMetrics& value) { m_aggregatedVariablesImportanceMetricsHasBeenSet = true; m_aggregatedVariablesImportanceMetrics = value; } /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline void SetAggregatedVariablesImportanceMetrics(AggregatedVariablesImportanceMetrics&& value) { m_aggregatedVariablesImportanceMetricsHasBeenSet = true; m_aggregatedVariablesImportanceMetrics = std::move(value); } /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline TrainingResultV2& WithAggregatedVariablesImportanceMetrics(const AggregatedVariablesImportanceMetrics& value) { SetAggregatedVariablesImportanceMetrics(value); return *this;} /** *

The variable importance metrics of the aggregated variables.

Account * Takeover Insights (ATI) model uses event variables from the login data you * provide to continuously calculate a set of variables (aggregated variables) * based on historical events. For example, your ATI model might calculate the * number of times an user has logged in using the same IP address. In this case, * event variables used to derive the aggregated variables are IP * address and user.

*/ inline TrainingResultV2& WithAggregatedVariablesImportanceMetrics(AggregatedVariablesImportanceMetrics&& value) { SetAggregatedVariablesImportanceMetrics(std::move(value)); return *this;} private: DataValidationMetrics m_dataValidationMetrics; bool m_dataValidationMetricsHasBeenSet = false; TrainingMetricsV2 m_trainingMetricsV2; bool m_trainingMetricsV2HasBeenSet = false; VariableImportanceMetrics m_variableImportanceMetrics; bool m_variableImportanceMetricsHasBeenSet = false; AggregatedVariablesImportanceMetrics m_aggregatedVariablesImportanceMetrics; bool m_aggregatedVariablesImportanceMetricsHasBeenSet = false; }; } // namespace Model } // namespace FraudDetector } // namespace Aws