/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include namespace Aws { namespace KMS { namespace Model { /** */ class SignRequest : public KMSRequest { public: AWS_KMS_API SignRequest(); // Service request name is the Operation name which will send this request out, // each operation should has unique request name, so that we can get operation's name from this request. // Note: this is not true for response, multiple operations may have the same response name, // so we can not get operation's name from response. inline virtual const char* GetServiceRequestName() const override { return "Sign"; } AWS_KMS_API Aws::String SerializePayload() const override; AWS_KMS_API Aws::Http::HeaderValueCollection GetRequestSpecificHeaders() const override; /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline const Aws::String& GetKeyId() const{ return m_keyId; } /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline bool KeyIdHasBeenSet() const { return m_keyIdHasBeenSet; } /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline void SetKeyId(const Aws::String& value) { m_keyIdHasBeenSet = true; m_keyId = value; } /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline void SetKeyId(Aws::String&& value) { m_keyIdHasBeenSet = true; m_keyId = std::move(value); } /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline void SetKeyId(const char* value) { m_keyIdHasBeenSet = true; m_keyId.assign(value); } /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline SignRequest& WithKeyId(const Aws::String& value) { SetKeyId(value); return *this;} /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline SignRequest& WithKeyId(Aws::String&& value) { SetKeyId(std::move(value)); return *this;} /** *

Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric * KMS key to sign the message. The KeyUsage type of the KMS key must * be SIGN_VERIFY. To find the KeyUsage of a KMS key, use * the DescribeKey operation.

To specify a KMS key, use its key ID, * key ARN, alias name, or alias ARN. When using an alias name, prefix it with * "alias/". To specify a KMS key in a different Amazon Web Services * account, you must use the key ARN or alias ARN.

For example:

    *
  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • *
  • Key ARN: * arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab *

  • Alias name: alias/ExampleAlias

  • *

    Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias *

To get the key ID and key ARN for a KMS key, use * ListKeys or DescribeKey. To get the alias name and alias ARN, use * ListAliases.

*/ inline SignRequest& WithKeyId(const char* value) { SetKeyId(value); return *this;} /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline const Aws::Utils::CryptoBuffer& GetMessage() const{ return m_message; } /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline bool MessageHasBeenSet() const { return m_messageHasBeenSet; } /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline void SetMessage(const Aws::Utils::CryptoBuffer& value) { m_messageHasBeenSet = true; m_message = value; } /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline void SetMessage(Aws::Utils::CryptoBuffer&& value) { m_messageHasBeenSet = true; m_message = std::move(value); } /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline SignRequest& WithMessage(const Aws::Utils::CryptoBuffer& value) { SetMessage(value); return *this;} /** *

Specifies the message or message digest to sign. Messages can be 0-4096 * bytes. To sign a larger message, provide a message digest.

If you provide * a message digest, use the DIGEST value of MessageType * to prevent the digest from being hashed again while signing.

*/ inline SignRequest& WithMessage(Aws::Utils::CryptoBuffer&& value) { SetMessage(std::move(value)); return *this;} /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline const MessageType& GetMessageType() const{ return m_messageType; } /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline bool MessageTypeHasBeenSet() const { return m_messageTypeHasBeenSet; } /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline void SetMessageType(const MessageType& value) { m_messageTypeHasBeenSet = true; m_messageType = value; } /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline void SetMessageType(MessageType&& value) { m_messageTypeHasBeenSet = true; m_messageType = std::move(value); } /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline SignRequest& WithMessageType(const MessageType& value) { SetMessageType(value); return *this;} /** *

Tells KMS whether the value of the Message parameter should be * hashed as part of the signing algorithm. Use RAW for unhashed * messages; use DIGEST for message digests, which are already * hashed.

When the value of MessageType is RAW, * KMS uses the standard signing algorithm, which begins with a hash function. When * the value is DIGEST, KMS skips the hashing step in the signing * algorithm.

Use the DIGEST value only when the * value of the Message parameter is a message digest. If you use the * DIGEST value with an unhashed message, the security of the signing * operation can be compromised.

When the value of * MessageTypeis DIGEST, the length of the * Message value must match the length of hashed messages for the * specified signing algorithm.

You can submit a message digest and omit the * MessageType or specify RAW so the digest is hashed * again while signing. However, this can cause verification failures when * verifying with a system that assumes a single hash.

The hashing algorithm * in that Sign uses is based on the SigningAlgorithm * value.

  • Signing algorithms that end in SHA_256 use the SHA_256 * hashing algorithm.

  • Signing algorithms that end in SHA_384 use * the SHA_384 hashing algorithm.

  • Signing algorithms that end in * SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 * hashing algorithm. For details, see Offline * verification with SM2 key pairs.

*/ inline SignRequest& WithMessageType(MessageType&& value) { SetMessageType(std::move(value)); return *this;} /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline const Aws::Vector& GetGrantTokens() const{ return m_grantTokens; } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline bool GrantTokensHasBeenSet() const { return m_grantTokensHasBeenSet; } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline void SetGrantTokens(const Aws::Vector& value) { m_grantTokensHasBeenSet = true; m_grantTokens = value; } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline void SetGrantTokens(Aws::Vector&& value) { m_grantTokensHasBeenSet = true; m_grantTokens = std::move(value); } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline SignRequest& WithGrantTokens(const Aws::Vector& value) { SetGrantTokens(value); return *this;} /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline SignRequest& WithGrantTokens(Aws::Vector&& value) { SetGrantTokens(std::move(value)); return *this;} /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline SignRequest& AddGrantTokens(const Aws::String& value) { m_grantTokensHasBeenSet = true; m_grantTokens.push_back(value); return *this; } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline SignRequest& AddGrantTokens(Aws::String&& value) { m_grantTokensHasBeenSet = true; m_grantTokens.push_back(std::move(value)); return *this; } /** *

A list of grant tokens.

Use a grant token when your permission to call * this operation comes from a new grant that has not yet achieved eventual * consistency. For more information, see Grant * token and Using * a grant token in the Key Management Service Developer Guide.

*/ inline SignRequest& AddGrantTokens(const char* value) { m_grantTokensHasBeenSet = true; m_grantTokens.push_back(value); return *this; } /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline const SigningAlgorithmSpec& GetSigningAlgorithm() const{ return m_signingAlgorithm; } /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline bool SigningAlgorithmHasBeenSet() const { return m_signingAlgorithmHasBeenSet; } /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline void SetSigningAlgorithm(const SigningAlgorithmSpec& value) { m_signingAlgorithmHasBeenSet = true; m_signingAlgorithm = value; } /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline void SetSigningAlgorithm(SigningAlgorithmSpec&& value) { m_signingAlgorithmHasBeenSet = true; m_signingAlgorithm = std::move(value); } /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline SignRequest& WithSigningAlgorithm(const SigningAlgorithmSpec& value) { SetSigningAlgorithm(value); return *this;} /** *

Specifies the signing algorithm to use when signing the message.

*

Choose an algorithm that is compatible with the type and size of the * specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS * algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for * compatibility with existing applications.

*/ inline SignRequest& WithSigningAlgorithm(SigningAlgorithmSpec&& value) { SetSigningAlgorithm(std::move(value)); return *this;} /** *

Checks if your request will succeed. DryRun is an optional * parameter.

To learn more about how to use this parameter, see Testing * your KMS API calls in the Key Management Service Developer Guide.

*/ inline bool GetDryRun() const{ return m_dryRun; } /** *

Checks if your request will succeed. DryRun is an optional * parameter.

To learn more about how to use this parameter, see Testing * your KMS API calls in the Key Management Service Developer Guide.

*/ inline bool DryRunHasBeenSet() const { return m_dryRunHasBeenSet; } /** *

Checks if your request will succeed. DryRun is an optional * parameter.

To learn more about how to use this parameter, see Testing * your KMS API calls in the Key Management Service Developer Guide.

*/ inline void SetDryRun(bool value) { m_dryRunHasBeenSet = true; m_dryRun = value; } /** *

Checks if your request will succeed. DryRun is an optional * parameter.

To learn more about how to use this parameter, see Testing * your KMS API calls in the Key Management Service Developer Guide.

*/ inline SignRequest& WithDryRun(bool value) { SetDryRun(value); return *this;} private: Aws::String m_keyId; bool m_keyIdHasBeenSet = false; Aws::Utils::CryptoBuffer m_message; bool m_messageHasBeenSet = false; MessageType m_messageType; bool m_messageTypeHasBeenSet = false; Aws::Vector m_grantTokens; bool m_grantTokensHasBeenSet = false; SigningAlgorithmSpec m_signingAlgorithm; bool m_signingAlgorithmHasBeenSet = false; bool m_dryRun; bool m_dryRunHasBeenSet = false; }; } // namespace Model } // namespace KMS } // namespace Aws