/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include
#include
#include
#include
#include
#include
namespace Aws
{
namespace LexRuntimeService
{
/**
* Amazon Lex provides both build and runtime endpoints. Each endpoint provides
* a set of operations (API). Your conversational bot uses the runtime API to
* understand user utterances (user input text or voice). For example, suppose a
* user says "I want pizza", your bot sends this input to Amazon Lex using the
* runtime API. Amazon Lex recognizes that the user request is for the OrderPizza
* intent (one of the intents defined in the bot). Then Amazon Lex engages in user
* conversation on behalf of the bot to elicit required information (slot values,
* such as pizza size and crust type), and then performs fulfillment activity (that
* you configured when you created the bot). You use the build-time API to create
* and manage your Amazon Lex bot. For a list of build-time operations, see the
* build-time API, .
*/
class AWS_LEXRUNTIMESERVICE_API LexRuntimeServiceClient : public Aws::Client::AWSJsonClient, public Aws::Client::ClientWithAsyncTemplateMethods
{
public:
typedef Aws::Client::AWSJsonClient BASECLASS;
static const char* SERVICE_NAME;
static const char* ALLOCATION_TAG;
typedef LexRuntimeServiceClientConfiguration ClientConfigurationType;
typedef LexRuntimeServiceEndpointProvider EndpointProviderType;
/**
* Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
LexRuntimeServiceClient(const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration(),
std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG));
/**
* Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
LexRuntimeServiceClient(const Aws::Auth::AWSCredentials& credentials,
std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG),
const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration());
/**
* Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied,
* the default http client factory will be used
*/
LexRuntimeServiceClient(const std::shared_ptr& credentialsProvider,
std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG),
const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration());
/* Legacy constructors due deprecation */
/**
* Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
LexRuntimeServiceClient(const Aws::Client::ClientConfiguration& clientConfiguration);
/**
* Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
LexRuntimeServiceClient(const Aws::Auth::AWSCredentials& credentials,
const Aws::Client::ClientConfiguration& clientConfiguration);
/**
* Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied,
* the default http client factory will be used
*/
LexRuntimeServiceClient(const std::shared_ptr& credentialsProvider,
const Aws::Client::ClientConfiguration& clientConfiguration);
/* End of legacy constructors due deprecation */
virtual ~LexRuntimeServiceClient();
/**
* Removes session information for a specified bot, alias, and user ID.
*
See Also:
AWS
* API Reference
*/
virtual Model::DeleteSessionOutcome DeleteSession(const Model::DeleteSessionRequest& request) const;
/**
* A Callable wrapper for DeleteSession that returns a future to the operation so that it can be executed in parallel to other requests.
*/
template
Model::DeleteSessionOutcomeCallable DeleteSessionCallable(const DeleteSessionRequestT& request) const
{
return SubmitCallable(&LexRuntimeServiceClient::DeleteSession, request);
}
/**
* An Async wrapper for DeleteSession that queues the request into a thread executor and triggers associated callback when operation has finished.
*/
template
void DeleteSessionAsync(const DeleteSessionRequestT& request, const DeleteSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const
{
return SubmitAsync(&LexRuntimeServiceClient::DeleteSession, request, handler, context);
}
/**
* Returns session information for a specified bot, alias, and user
* ID.
See Also:
AWS
* API Reference
*/
virtual Model::GetSessionOutcome GetSession(const Model::GetSessionRequest& request) const;
/**
* A Callable wrapper for GetSession that returns a future to the operation so that it can be executed in parallel to other requests.
*/
template
Model::GetSessionOutcomeCallable GetSessionCallable(const GetSessionRequestT& request) const
{
return SubmitCallable(&LexRuntimeServiceClient::GetSession, request);
}
/**
* An Async wrapper for GetSession that queues the request into a thread executor and triggers associated callback when operation has finished.
*/
template
void GetSessionAsync(const GetSessionRequestT& request, const GetSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const
{
return SubmitAsync(&LexRuntimeServiceClient::GetSession, request, handler, context);
}
/**
* Sends user input (text or speech) to Amazon Lex. Clients use this API to
* send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the
* user input using the machine learning model that it built for the bot.
* The PostContent
operation supports audio input at 8kHz and
* 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in
* telephone audio applications.
In response, Amazon Lex returns the next
* message to convey to the user. Consider the following example messages:
* -
For a user input "I would like a pizza," Amazon Lex might return a
* response with a message eliciting slot data (for example,
* PizzaSize
): "What size pizza would you like?".
-
* After the user provides all of the pizza order information, Amazon Lex might
* return a response with a message to get user confirmation: "Order the pizza?".
*
-
After the user replies "Yes" to the confirmation prompt,
* Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza
* has been ordered.".
Not all Amazon Lex messages require a
* response from the user. For example, conclusion statements do not require a
* response. Some messages require only a yes or no response. In addition to the
* message
, Amazon Lex provides additional context about the message
* in the response that you can use to enhance client behavior, such as displaying
* the appropriate client user interface. Consider the following examples:
* -
If the message is to elicit slot data, Amazon Lex returns the
* following context information:
-
* x-amz-lex-dialog-state
header set to ElicitSlot
* -
x-amz-lex-intent-name
header set to the intent name
* in the current context
-
x-amz-lex-slot-to-elicit
* header set to the slot name for which the message
is eliciting
* information
-
x-amz-lex-slots
header set to a map
* of slots configured for the intent with their current values
* -
If the message is a confirmation prompt, the
* x-amz-lex-dialog-state
header is set to Confirmation
* and the x-amz-lex-slot-to-elicit
header is omitted.
-
*
If the message is a clarification prompt configured for the intent,
* indicating that the user intent is not understood, the
* x-amz-dialog-state
header is set to ElicitIntent
and
* the x-amz-slot-to-elicit
header is omitted.
In
* addition, Amazon Lex also returns your application-specific
* sessionAttributes
. For more information, see Managing
* Conversation Context.
See Also:
AWS
* API Reference
*/
virtual Model::PostContentOutcome PostContent(const Model::PostContentRequest& request) const;
/**
* A Callable wrapper for PostContent that returns a future to the operation so that it can be executed in parallel to other requests.
*/
template
Model::PostContentOutcomeCallable PostContentCallable(const PostContentRequestT& request) const
{
return SubmitCallable(&LexRuntimeServiceClient::PostContent, request);
}
/**
* An Async wrapper for PostContent that queues the request into a thread executor and triggers associated callback when operation has finished.
*/
template
void PostContentAsync(const PostContentRequestT& request, const PostContentResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const
{
return SubmitAsync(&LexRuntimeServiceClient::PostContent, request, handler, context);
}
/**
* Sends user input to Amazon Lex. Client applications can use this API to send
* requests to Amazon Lex at runtime. Amazon Lex then interprets the user input
* using the machine learning model it built for the bot.
In response,
* Amazon Lex returns the next message
to convey to the user an
* optional responseCard
to display. Consider the following example
* messages:
-
For a user input "I would like a pizza", Amazon Lex
* might return a response with a message eliciting slot data (for example,
* PizzaSize): "What size pizza would you like?"
-
After the user
* provides all of the pizza order information, Amazon Lex might return a response
* with a message to obtain user confirmation "Proceed with the pizza order?".
* -
After the user replies to a confirmation prompt with a "yes",
* Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza
* has been ordered.".
Not all Amazon Lex messages require a
* user response. For example, a conclusion statement does not require a response.
* Some messages require only a "yes" or "no" user response. In addition to the
* message
, Amazon Lex provides additional context about the message
* in the response that you might use to enhance client behavior, for example, to
* display the appropriate client user interface. These are the
* slotToElicit
, dialogState
, intentName
,
* and slots
fields in the response. Consider the following examples:
*
-
If the message is to elicit slot data, Amazon Lex returns the
* following context information:
-
dialogState
set to
* ElicitSlot
-
intentName
set to the intent name in
* the current context
-
slotToElicit
set to the
* slot name for which the message
is eliciting information
* -
slots
set to a map of slots, configured for the intent,
* with currently known values
-
If the message is a
* confirmation prompt, the dialogState
is set to ConfirmIntent and
* SlotToElicit
is set to null.
-
If the message is a
* clarification prompt (configured for the intent) that indicates that user intent
* is not understood, the dialogState
is set to ElicitIntent and
* slotToElicit
is set to null.
In addition,
* Amazon Lex also returns your application-specific
* sessionAttributes
. For more information, see Managing
* Conversation Context.
See Also:
AWS
* API Reference
*/
virtual Model::PostTextOutcome PostText(const Model::PostTextRequest& request) const;
/**
* A Callable wrapper for PostText that returns a future to the operation so that it can be executed in parallel to other requests.
*/
template
Model::PostTextOutcomeCallable PostTextCallable(const PostTextRequestT& request) const
{
return SubmitCallable(&LexRuntimeServiceClient::PostText, request);
}
/**
* An Async wrapper for PostText that queues the request into a thread executor and triggers associated callback when operation has finished.
*/
template
void PostTextAsync(const PostTextRequestT& request, const PostTextResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const
{
return SubmitAsync(&LexRuntimeServiceClient::PostText, request, handler, context);
}
/**
* Creates a new session or modifies an existing session with an Amazon Lex bot.
* Use this operation to enable your application to set the state of the bot.
* For more information, see Managing
* Sessions.
See Also:
AWS
* API Reference
*/
virtual Model::PutSessionOutcome PutSession(const Model::PutSessionRequest& request) const;
/**
* A Callable wrapper for PutSession that returns a future to the operation so that it can be executed in parallel to other requests.
*/
template
Model::PutSessionOutcomeCallable PutSessionCallable(const PutSessionRequestT& request) const
{
return SubmitCallable(&LexRuntimeServiceClient::PutSession, request);
}
/**
* An Async wrapper for PutSession that queues the request into a thread executor and triggers associated callback when operation has finished.
*/
template
void PutSessionAsync(const PutSessionRequestT& request, const PutSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const
{
return SubmitAsync(&LexRuntimeServiceClient::PutSession, request, handler, context);
}
void OverrideEndpoint(const Aws::String& endpoint);
std::shared_ptr& accessEndpointProvider();
private:
friend class Aws::Client::ClientWithAsyncTemplateMethods;
void init(const LexRuntimeServiceClientConfiguration& clientConfiguration);
LexRuntimeServiceClientConfiguration m_clientConfiguration;
std::shared_ptr m_executor;
std::shared_ptr m_endpointProvider;
};
} // namespace LexRuntimeService
} // namespace Aws