/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include namespace Aws { namespace LexRuntimeService { /** *

Amazon Lex provides both build and runtime endpoints. Each endpoint provides * a set of operations (API). Your conversational bot uses the runtime API to * understand user utterances (user input text or voice). For example, suppose a * user says "I want pizza", your bot sends this input to Amazon Lex using the * runtime API. Amazon Lex recognizes that the user request is for the OrderPizza * intent (one of the intents defined in the bot). Then Amazon Lex engages in user * conversation on behalf of the bot to elicit required information (slot values, * such as pizza size and crust type), and then performs fulfillment activity (that * you configured when you created the bot). You use the build-time API to create * and manage your Amazon Lex bot. For a list of build-time operations, see the * build-time API, .

*/ class AWS_LEXRUNTIMESERVICE_API LexRuntimeServiceClient : public Aws::Client::AWSJsonClient, public Aws::Client::ClientWithAsyncTemplateMethods { public: typedef Aws::Client::AWSJsonClient BASECLASS; static const char* SERVICE_NAME; static const char* ALLOCATION_TAG; typedef LexRuntimeServiceClientConfiguration ClientConfigurationType; typedef LexRuntimeServiceEndpointProvider EndpointProviderType; /** * Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config * is not specified, it will be initialized to default values. */ LexRuntimeServiceClient(const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration(), std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG)); /** * Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config * is not specified, it will be initialized to default values. */ LexRuntimeServiceClient(const Aws::Auth::AWSCredentials& credentials, std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG), const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration()); /** * Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied, * the default http client factory will be used */ LexRuntimeServiceClient(const std::shared_ptr& credentialsProvider, std::shared_ptr endpointProvider = Aws::MakeShared(ALLOCATION_TAG), const Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration& clientConfiguration = Aws::LexRuntimeService::LexRuntimeServiceClientConfiguration()); /* Legacy constructors due deprecation */ /** * Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config * is not specified, it will be initialized to default values. */ LexRuntimeServiceClient(const Aws::Client::ClientConfiguration& clientConfiguration); /** * Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config * is not specified, it will be initialized to default values. */ LexRuntimeServiceClient(const Aws::Auth::AWSCredentials& credentials, const Aws::Client::ClientConfiguration& clientConfiguration); /** * Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied, * the default http client factory will be used */ LexRuntimeServiceClient(const std::shared_ptr& credentialsProvider, const Aws::Client::ClientConfiguration& clientConfiguration); /* End of legacy constructors due deprecation */ virtual ~LexRuntimeServiceClient(); /** *

Removes session information for a specified bot, alias, and user ID. *

See Also:

AWS * API Reference

*/ virtual Model::DeleteSessionOutcome DeleteSession(const Model::DeleteSessionRequest& request) const; /** * A Callable wrapper for DeleteSession that returns a future to the operation so that it can be executed in parallel to other requests. */ template Model::DeleteSessionOutcomeCallable DeleteSessionCallable(const DeleteSessionRequestT& request) const { return SubmitCallable(&LexRuntimeServiceClient::DeleteSession, request); } /** * An Async wrapper for DeleteSession that queues the request into a thread executor and triggers associated callback when operation has finished. */ template void DeleteSessionAsync(const DeleteSessionRequestT& request, const DeleteSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const { return SubmitAsync(&LexRuntimeServiceClient::DeleteSession, request, handler, context); } /** *

Returns session information for a specified bot, alias, and user * ID.

See Also:

AWS * API Reference

*/ virtual Model::GetSessionOutcome GetSession(const Model::GetSessionRequest& request) const; /** * A Callable wrapper for GetSession that returns a future to the operation so that it can be executed in parallel to other requests. */ template Model::GetSessionOutcomeCallable GetSessionCallable(const GetSessionRequestT& request) const { return SubmitCallable(&LexRuntimeServiceClient::GetSession, request); } /** * An Async wrapper for GetSession that queues the request into a thread executor and triggers associated callback when operation has finished. */ template void GetSessionAsync(const GetSessionRequestT& request, const GetSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const { return SubmitAsync(&LexRuntimeServiceClient::GetSession, request, handler, context); } /** *

Sends user input (text or speech) to Amazon Lex. Clients use this API to * send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the * user input using the machine learning model that it built for the bot.

*

The PostContent operation supports audio input at 8kHz and * 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in * telephone audio applications.

In response, Amazon Lex returns the next * message to convey to the user. Consider the following example messages:

*
  • For a user input "I would like a pizza," Amazon Lex might return a * response with a message eliciting slot data (for example, * PizzaSize): "What size pizza would you like?".

  • * After the user provides all of the pizza order information, Amazon Lex might * return a response with a message to get user confirmation: "Order the pizza?". *

  • After the user replies "Yes" to the confirmation prompt, * Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza * has been ordered.".

Not all Amazon Lex messages require a * response from the user. For example, conclusion statements do not require a * response. Some messages require only a yes or no response. In addition to the * message, Amazon Lex provides additional context about the message * in the response that you can use to enhance client behavior, such as displaying * the appropriate client user interface. Consider the following examples:

*
  • If the message is to elicit slot data, Amazon Lex returns the * following context information:

    • * x-amz-lex-dialog-state header set to ElicitSlot

      *
    • x-amz-lex-intent-name header set to the intent name * in the current context

    • x-amz-lex-slot-to-elicit * header set to the slot name for which the message is eliciting * information

    • x-amz-lex-slots header set to a map * of slots configured for the intent with their current values

    *
  • If the message is a confirmation prompt, the * x-amz-lex-dialog-state header is set to Confirmation * and the x-amz-lex-slot-to-elicit header is omitted.

  • *

    If the message is a clarification prompt configured for the intent, * indicating that the user intent is not understood, the * x-amz-dialog-state header is set to ElicitIntent and * the x-amz-slot-to-elicit header is omitted.

In * addition, Amazon Lex also returns your application-specific * sessionAttributes. For more information, see Managing * Conversation Context.

See Also:

AWS * API Reference

*/ virtual Model::PostContentOutcome PostContent(const Model::PostContentRequest& request) const; /** * A Callable wrapper for PostContent that returns a future to the operation so that it can be executed in parallel to other requests. */ template Model::PostContentOutcomeCallable PostContentCallable(const PostContentRequestT& request) const { return SubmitCallable(&LexRuntimeServiceClient::PostContent, request); } /** * An Async wrapper for PostContent that queues the request into a thread executor and triggers associated callback when operation has finished. */ template void PostContentAsync(const PostContentRequestT& request, const PostContentResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const { return SubmitAsync(&LexRuntimeServiceClient::PostContent, request, handler, context); } /** *

Sends user input to Amazon Lex. Client applications can use this API to send * requests to Amazon Lex at runtime. Amazon Lex then interprets the user input * using the machine learning model it built for the bot.

In response, * Amazon Lex returns the next message to convey to the user an * optional responseCard to display. Consider the following example * messages:

  • For a user input "I would like a pizza", Amazon Lex * might return a response with a message eliciting slot data (for example, * PizzaSize): "What size pizza would you like?"

  • After the user * provides all of the pizza order information, Amazon Lex might return a response * with a message to obtain user confirmation "Proceed with the pizza order?".

    *
  • After the user replies to a confirmation prompt with a "yes", * Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza * has been ordered.".

Not all Amazon Lex messages require a * user response. For example, a conclusion statement does not require a response. * Some messages require only a "yes" or "no" user response. In addition to the * message, Amazon Lex provides additional context about the message * in the response that you might use to enhance client behavior, for example, to * display the appropriate client user interface. These are the * slotToElicit, dialogState, intentName, * and slots fields in the response. Consider the following examples: *

  • If the message is to elicit slot data, Amazon Lex returns the * following context information:

    • dialogState set to * ElicitSlot

    • intentName set to the intent name in * the current context

    • slotToElicit set to the * slot name for which the message is eliciting information

    • *
    • slots set to a map of slots, configured for the intent, * with currently known values

  • If the message is a * confirmation prompt, the dialogState is set to ConfirmIntent and * SlotToElicit is set to null.

  • If the message is a * clarification prompt (configured for the intent) that indicates that user intent * is not understood, the dialogState is set to ElicitIntent and * slotToElicit is set to null.

In addition, * Amazon Lex also returns your application-specific * sessionAttributes. For more information, see Managing * Conversation Context.

See Also:

AWS * API Reference

*/ virtual Model::PostTextOutcome PostText(const Model::PostTextRequest& request) const; /** * A Callable wrapper for PostText that returns a future to the operation so that it can be executed in parallel to other requests. */ template Model::PostTextOutcomeCallable PostTextCallable(const PostTextRequestT& request) const { return SubmitCallable(&LexRuntimeServiceClient::PostText, request); } /** * An Async wrapper for PostText that queues the request into a thread executor and triggers associated callback when operation has finished. */ template void PostTextAsync(const PostTextRequestT& request, const PostTextResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const { return SubmitAsync(&LexRuntimeServiceClient::PostText, request, handler, context); } /** *

Creates a new session or modifies an existing session with an Amazon Lex bot. * Use this operation to enable your application to set the state of the bot.

*

For more information, see Managing * Sessions.

See Also:

AWS * API Reference

*/ virtual Model::PutSessionOutcome PutSession(const Model::PutSessionRequest& request) const; /** * A Callable wrapper for PutSession that returns a future to the operation so that it can be executed in parallel to other requests. */ template Model::PutSessionOutcomeCallable PutSessionCallable(const PutSessionRequestT& request) const { return SubmitCallable(&LexRuntimeServiceClient::PutSession, request); } /** * An Async wrapper for PutSession that queues the request into a thread executor and triggers associated callback when operation has finished. */ template void PutSessionAsync(const PutSessionRequestT& request, const PutSessionResponseReceivedHandler& handler, const std::shared_ptr& context = nullptr) const { return SubmitAsync(&LexRuntimeServiceClient::PutSession, request, handler, context); } void OverrideEndpoint(const Aws::String& endpoint); std::shared_ptr& accessEndpointProvider(); private: friend class Aws::Client::ClientWithAsyncTemplateMethods; void init(const LexRuntimeServiceClientConfiguration& clientConfiguration); LexRuntimeServiceClientConfiguration m_clientConfiguration; std::shared_ptr m_executor; std::shared_ptr m_endpointProvider; }; } // namespace LexRuntimeService } // namespace Aws