/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include namespace Aws { namespace MachineLearning { namespace Model { /** */ class CreateMLModelRequest : public MachineLearningRequest { public: AWS_MACHINELEARNING_API CreateMLModelRequest(); // Service request name is the Operation name which will send this request out, // each operation should has unique request name, so that we can get operation's name from this request. // Note: this is not true for response, multiple operations may have the same response name, // so we can not get operation's name from response. inline virtual const char* GetServiceRequestName() const override { return "CreateMLModel"; } AWS_MACHINELEARNING_API Aws::String SerializePayload() const override; AWS_MACHINELEARNING_API Aws::Http::HeaderValueCollection GetRequestSpecificHeaders() const override; /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline const Aws::String& GetMLModelId() const{ return m_mLModelId; } /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline bool MLModelIdHasBeenSet() const { return m_mLModelIdHasBeenSet; } /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline void SetMLModelId(const Aws::String& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = value; } /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline void SetMLModelId(Aws::String&& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = std::move(value); } /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline void SetMLModelId(const char* value) { m_mLModelIdHasBeenSet = true; m_mLModelId.assign(value); } /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline CreateMLModelRequest& WithMLModelId(const Aws::String& value) { SetMLModelId(value); return *this;} /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline CreateMLModelRequest& WithMLModelId(Aws::String&& value) { SetMLModelId(std::move(value)); return *this;} /** *

A user-supplied ID that uniquely identifies the MLModel.

*/ inline CreateMLModelRequest& WithMLModelId(const char* value) { SetMLModelId(value); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline const Aws::String& GetMLModelName() const{ return m_mLModelName; } /** *

A user-supplied name or description of the MLModel.

*/ inline bool MLModelNameHasBeenSet() const { return m_mLModelNameHasBeenSet; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetMLModelName(const Aws::String& value) { m_mLModelNameHasBeenSet = true; m_mLModelName = value; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetMLModelName(Aws::String&& value) { m_mLModelNameHasBeenSet = true; m_mLModelName = std::move(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetMLModelName(const char* value) { m_mLModelNameHasBeenSet = true; m_mLModelName.assign(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline CreateMLModelRequest& WithMLModelName(const Aws::String& value) { SetMLModelName(value); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline CreateMLModelRequest& WithMLModelName(Aws::String&& value) { SetMLModelName(std::move(value)); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline CreateMLModelRequest& WithMLModelName(const char* value) { SetMLModelName(value); return *this;} /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline const MLModelType& GetMLModelType() const{ return m_mLModelType; } /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline bool MLModelTypeHasBeenSet() const { return m_mLModelTypeHasBeenSet; } /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline void SetMLModelType(const MLModelType& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = value; } /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline void SetMLModelType(MLModelType&& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = std::move(value); } /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline CreateMLModelRequest& WithMLModelType(const MLModelType& value) { SetMLModelType(value); return *this;} /** *

The category of supervised learning that this MLModel will * address. Choose from the following types:

  • Choose * REGRESSION if the MLModel will be used to predict a * numeric value.

  • Choose BINARY if the * MLModel result has two possible values.

  • Choose * MULTICLASS if the MLModel result has a limited number * of values.

For more information, see the Amazon Machine * Learning Developer Guide.

*/ inline CreateMLModelRequest& WithMLModelType(MLModelType&& value) { SetMLModelType(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline const Aws::Map& GetParameters() const{ return m_parameters; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline bool ParametersHasBeenSet() const { return m_parametersHasBeenSet; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetParameters(const Aws::Map& value) { m_parametersHasBeenSet = true; m_parameters = value; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetParameters(Aws::Map&& value) { m_parametersHasBeenSet = true; m_parameters = std::move(value); } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& WithParameters(const Aws::Map& value) { SetParameters(value); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& WithParameters(Aws::Map&& value) { SetParameters(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(const Aws::String& key, const Aws::String& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(Aws::String&& key, const Aws::String& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(const Aws::String& key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(Aws::String&& key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(const char* key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(Aws::String&& key, const char* value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline CreateMLModelRequest& AddParameters(const char* key, const char* value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; } /** *

The DataSource that points to the training data.

*/ inline const Aws::String& GetTrainingDataSourceId() const{ return m_trainingDataSourceId; } /** *

The DataSource that points to the training data.

*/ inline bool TrainingDataSourceIdHasBeenSet() const { return m_trainingDataSourceIdHasBeenSet; } /** *

The DataSource that points to the training data.

*/ inline void SetTrainingDataSourceId(const Aws::String& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = value; } /** *

The DataSource that points to the training data.

*/ inline void SetTrainingDataSourceId(Aws::String&& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = std::move(value); } /** *

The DataSource that points to the training data.

*/ inline void SetTrainingDataSourceId(const char* value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId.assign(value); } /** *

The DataSource that points to the training data.

*/ inline CreateMLModelRequest& WithTrainingDataSourceId(const Aws::String& value) { SetTrainingDataSourceId(value); return *this;} /** *

The DataSource that points to the training data.

*/ inline CreateMLModelRequest& WithTrainingDataSourceId(Aws::String&& value) { SetTrainingDataSourceId(std::move(value)); return *this;} /** *

The DataSource that points to the training data.

*/ inline CreateMLModelRequest& WithTrainingDataSourceId(const char* value) { SetTrainingDataSourceId(value); return *this;} /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline const Aws::String& GetRecipe() const{ return m_recipe; } /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline bool RecipeHasBeenSet() const { return m_recipeHasBeenSet; } /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline void SetRecipe(const Aws::String& value) { m_recipeHasBeenSet = true; m_recipe = value; } /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline void SetRecipe(Aws::String&& value) { m_recipeHasBeenSet = true; m_recipe = std::move(value); } /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline void SetRecipe(const char* value) { m_recipeHasBeenSet = true; m_recipe.assign(value); } /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline CreateMLModelRequest& WithRecipe(const Aws::String& value) { SetRecipe(value); return *this;} /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline CreateMLModelRequest& WithRecipe(Aws::String&& value) { SetRecipe(std::move(value)); return *this;} /** *

The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, Amazon * ML creates a default.

*/ inline CreateMLModelRequest& WithRecipe(const char* value) { SetRecipe(value); return *this;} /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline const Aws::String& GetRecipeUri() const{ return m_recipeUri; } /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline bool RecipeUriHasBeenSet() const { return m_recipeUriHasBeenSet; } /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline void SetRecipeUri(const Aws::String& value) { m_recipeUriHasBeenSet = true; m_recipeUri = value; } /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline void SetRecipeUri(Aws::String&& value) { m_recipeUriHasBeenSet = true; m_recipeUri = std::move(value); } /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline void SetRecipeUri(const char* value) { m_recipeUriHasBeenSet = true; m_recipeUri.assign(value); } /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline CreateMLModelRequest& WithRecipeUri(const Aws::String& value) { SetRecipeUri(value); return *this;} /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline CreateMLModelRequest& WithRecipeUri(Aws::String&& value) { SetRecipeUri(std::move(value)); return *this;} /** *

The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the recipe or * its URI. If you don't specify a recipe or its URI, Amazon ML creates a * default.

*/ inline CreateMLModelRequest& WithRecipeUri(const char* value) { SetRecipeUri(value); return *this;} private: Aws::String m_mLModelId; bool m_mLModelIdHasBeenSet = false; Aws::String m_mLModelName; bool m_mLModelNameHasBeenSet = false; MLModelType m_mLModelType; bool m_mLModelTypeHasBeenSet = false; Aws::Map m_parameters; bool m_parametersHasBeenSet = false; Aws::String m_trainingDataSourceId; bool m_trainingDataSourceIdHasBeenSet = false; Aws::String m_recipe; bool m_recipeHasBeenSet = false; Aws::String m_recipeUri; bool m_recipeUriHasBeenSet = false; }; } // namespace Model } // namespace MachineLearning } // namespace Aws