/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include namespace Aws { template class AmazonWebServiceResult; namespace Utils { namespace Json { class JsonValue; } // namespace Json } // namespace Utils namespace MachineLearning { namespace Model { /** *

Represents the output of a GetMLModel operation, and provides * detailed information about a MLModel.

See Also:

AWS * API Reference

*/ class GetMLModelResult { public: AWS_MACHINELEARNING_API GetMLModelResult(); AWS_MACHINELEARNING_API GetMLModelResult(const Aws::AmazonWebServiceResult& result); AWS_MACHINELEARNING_API GetMLModelResult& operator=(const Aws::AmazonWebServiceResult& result); /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline const Aws::String& GetMLModelId() const{ return m_mLModelId; } /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline void SetMLModelId(const Aws::String& value) { m_mLModelId = value; } /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline void SetMLModelId(Aws::String&& value) { m_mLModelId = std::move(value); } /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline void SetMLModelId(const char* value) { m_mLModelId.assign(value); } /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline GetMLModelResult& WithMLModelId(const Aws::String& value) { SetMLModelId(value); return *this;} /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline GetMLModelResult& WithMLModelId(Aws::String&& value) { SetMLModelId(std::move(value)); return *this;} /** *

The MLModel ID, which is same as the MLModelId in the * request.

*/ inline GetMLModelResult& WithMLModelId(const char* value) { SetMLModelId(value); return *this;} /** *

The ID of the training DataSource.

*/ inline const Aws::String& GetTrainingDataSourceId() const{ return m_trainingDataSourceId; } /** *

The ID of the training DataSource.

*/ inline void SetTrainingDataSourceId(const Aws::String& value) { m_trainingDataSourceId = value; } /** *

The ID of the training DataSource.

*/ inline void SetTrainingDataSourceId(Aws::String&& value) { m_trainingDataSourceId = std::move(value); } /** *

The ID of the training DataSource.

*/ inline void SetTrainingDataSourceId(const char* value) { m_trainingDataSourceId.assign(value); } /** *

The ID of the training DataSource.

*/ inline GetMLModelResult& WithTrainingDataSourceId(const Aws::String& value) { SetTrainingDataSourceId(value); return *this;} /** *

The ID of the training DataSource.

*/ inline GetMLModelResult& WithTrainingDataSourceId(Aws::String&& value) { SetTrainingDataSourceId(std::move(value)); return *this;} /** *

The ID of the training DataSource.

*/ inline GetMLModelResult& WithTrainingDataSourceId(const char* value) { SetTrainingDataSourceId(value); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline const Aws::String& GetCreatedByIamUser() const{ return m_createdByIamUser; } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(const Aws::String& value) { m_createdByIamUser = value; } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(Aws::String&& value) { m_createdByIamUser = std::move(value); } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(const char* value) { m_createdByIamUser.assign(value); } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline GetMLModelResult& WithCreatedByIamUser(const Aws::String& value) { SetCreatedByIamUser(value); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline GetMLModelResult& WithCreatedByIamUser(Aws::String&& value) { SetCreatedByIamUser(std::move(value)); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline GetMLModelResult& WithCreatedByIamUser(const char* value) { SetCreatedByIamUser(value); return *this;} /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline const Aws::Utils::DateTime& GetCreatedAt() const{ return m_createdAt; } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline void SetCreatedAt(const Aws::Utils::DateTime& value) { m_createdAt = value; } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline void SetCreatedAt(Aws::Utils::DateTime&& value) { m_createdAt = std::move(value); } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline GetMLModelResult& WithCreatedAt(const Aws::Utils::DateTime& value) { SetCreatedAt(value); return *this;} /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline GetMLModelResult& WithCreatedAt(Aws::Utils::DateTime&& value) { SetCreatedAt(std::move(value)); return *this;} /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline const Aws::Utils::DateTime& GetLastUpdatedAt() const{ return m_lastUpdatedAt; } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline void SetLastUpdatedAt(const Aws::Utils::DateTime& value) { m_lastUpdatedAt = value; } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline void SetLastUpdatedAt(Aws::Utils::DateTime&& value) { m_lastUpdatedAt = std::move(value); } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline GetMLModelResult& WithLastUpdatedAt(const Aws::Utils::DateTime& value) { SetLastUpdatedAt(value); return *this;} /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline GetMLModelResult& WithLastUpdatedAt(Aws::Utils::DateTime&& value) { SetLastUpdatedAt(std::move(value)); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline const Aws::String& GetName() const{ return m_name; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(const Aws::String& value) { m_name = value; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(Aws::String&& value) { m_name = std::move(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(const char* value) { m_name.assign(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline GetMLModelResult& WithName(const Aws::String& value) { SetName(value); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline GetMLModelResult& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline GetMLModelResult& WithName(const char* value) { SetName(value); return *this;} /** *

The current status of the MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to describe a MLModel.

    *
  • INPROGRESS - The request is processing.

  • *
  • FAILED - The request did not run to completion. The ML * model isn't usable.

  • COMPLETED - The request * completed successfully.

  • DELETED - The * MLModel is marked as deleted. It isn't usable.

*/ inline const EntityStatus& GetStatus() const{ return m_status; } /** *

The current status of the MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to describe a MLModel.

    *
  • INPROGRESS - The request is processing.

  • *
  • FAILED - The request did not run to completion. The ML * model isn't usable.

  • COMPLETED - The request * completed successfully.

  • DELETED - The * MLModel is marked as deleted. It isn't usable.

*/ inline void SetStatus(const EntityStatus& value) { m_status = value; } /** *

The current status of the MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to describe a MLModel.

    *
  • INPROGRESS - The request is processing.

  • *
  • FAILED - The request did not run to completion. The ML * model isn't usable.

  • COMPLETED - The request * completed successfully.

  • DELETED - The * MLModel is marked as deleted. It isn't usable.

*/ inline void SetStatus(EntityStatus&& value) { m_status = std::move(value); } /** *

The current status of the MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to describe a MLModel.

    *
  • INPROGRESS - The request is processing.

  • *
  • FAILED - The request did not run to completion. The ML * model isn't usable.

  • COMPLETED - The request * completed successfully.

  • DELETED - The * MLModel is marked as deleted. It isn't usable.

*/ inline GetMLModelResult& WithStatus(const EntityStatus& value) { SetStatus(value); return *this;} /** *

The current status of the MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to describe a MLModel.

    *
  • INPROGRESS - The request is processing.

  • *
  • FAILED - The request did not run to completion. The ML * model isn't usable.

  • COMPLETED - The request * completed successfully.

  • DELETED - The * MLModel is marked as deleted. It isn't usable.

*/ inline GetMLModelResult& WithStatus(EntityStatus&& value) { SetStatus(std::move(value)); return *this;} inline long long GetSizeInBytes() const{ return m_sizeInBytes; } inline void SetSizeInBytes(long long value) { m_sizeInBytes = value; } inline GetMLModelResult& WithSizeInBytes(long long value) { SetSizeInBytes(value); return *this;} /** *

The current endpoint of the MLModel

*/ inline const RealtimeEndpointInfo& GetEndpointInfo() const{ return m_endpointInfo; } /** *

The current endpoint of the MLModel

*/ inline void SetEndpointInfo(const RealtimeEndpointInfo& value) { m_endpointInfo = value; } /** *

The current endpoint of the MLModel

*/ inline void SetEndpointInfo(RealtimeEndpointInfo&& value) { m_endpointInfo = std::move(value); } /** *

The current endpoint of the MLModel

*/ inline GetMLModelResult& WithEndpointInfo(const RealtimeEndpointInfo& value) { SetEndpointInfo(value); return *this;} /** *

The current endpoint of the MLModel

*/ inline GetMLModelResult& WithEndpointInfo(RealtimeEndpointInfo&& value) { SetEndpointInfo(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline const Aws::Map& GetTrainingParameters() const{ return m_trainingParameters; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetTrainingParameters(const Aws::Map& value) { m_trainingParameters = value; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetTrainingParameters(Aws::Map&& value) { m_trainingParameters = std::move(value); } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& WithTrainingParameters(const Aws::Map& value) { SetTrainingParameters(value); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& WithTrainingParameters(Aws::Map&& value) { SetTrainingParameters(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(const Aws::String& key, const Aws::String& value) { m_trainingParameters.emplace(key, value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(Aws::String&& key, const Aws::String& value) { m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(const Aws::String& key, Aws::String&& value) { m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(Aws::String&& key, Aws::String&& value) { m_trainingParameters.emplace(std::move(key), std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(const char* key, Aws::String&& value) { m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(Aws::String&& key, const char* value) { m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none. We strongly recommend * that you shuffle your data.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to zero, resulting in a sparse feature set. If you * use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline GetMLModelResult& AddTrainingParameters(const char* key, const char* value) { m_trainingParameters.emplace(key, value); return *this; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline const Aws::String& GetInputDataLocationS3() const{ return m_inputDataLocationS3; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(const Aws::String& value) { m_inputDataLocationS3 = value; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(Aws::String&& value) { m_inputDataLocationS3 = std::move(value); } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(const char* value) { m_inputDataLocationS3.assign(value); } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline GetMLModelResult& WithInputDataLocationS3(const Aws::String& value) { SetInputDataLocationS3(value); return *this;} /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline GetMLModelResult& WithInputDataLocationS3(Aws::String&& value) { SetInputDataLocationS3(std::move(value)); return *this;} /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline GetMLModelResult& WithInputDataLocationS3(const char* value) { SetInputDataLocationS3(value); return *this;} /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION -- Produces a numeric result. For example, * "What price should a house be listed at?"

  • BINARY -- Produces * one of two possible results. For example, "Is this an e-commerce website?"

    *
  • MULTICLASS -- Produces one of several possible results. For * example, "Is this a HIGH, LOW or MEDIUM risk trade?"

*/ inline const MLModelType& GetMLModelType() const{ return m_mLModelType; } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION -- Produces a numeric result. For example, * "What price should a house be listed at?"

  • BINARY -- Produces * one of two possible results. For example, "Is this an e-commerce website?"

    *
  • MULTICLASS -- Produces one of several possible results. For * example, "Is this a HIGH, LOW or MEDIUM risk trade?"

*/ inline void SetMLModelType(const MLModelType& value) { m_mLModelType = value; } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION -- Produces a numeric result. For example, * "What price should a house be listed at?"

  • BINARY -- Produces * one of two possible results. For example, "Is this an e-commerce website?"

    *
  • MULTICLASS -- Produces one of several possible results. For * example, "Is this a HIGH, LOW or MEDIUM risk trade?"

*/ inline void SetMLModelType(MLModelType&& value) { m_mLModelType = std::move(value); } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION -- Produces a numeric result. For example, * "What price should a house be listed at?"

  • BINARY -- Produces * one of two possible results. For example, "Is this an e-commerce website?"

    *
  • MULTICLASS -- Produces one of several possible results. For * example, "Is this a HIGH, LOW or MEDIUM risk trade?"

*/ inline GetMLModelResult& WithMLModelType(const MLModelType& value) { SetMLModelType(value); return *this;} /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION -- Produces a numeric result. For example, * "What price should a house be listed at?"

  • BINARY -- Produces * one of two possible results. For example, "Is this an e-commerce website?"

    *
  • MULTICLASS -- Produces one of several possible results. For * example, "Is this a HIGH, LOW or MEDIUM risk trade?"

*/ inline GetMLModelResult& WithMLModelType(MLModelType&& value) { SetMLModelType(std::move(value)); return *this;} /** *

The scoring threshold is used in binary classification MLModel * models. It marks the boundary between a positive prediction and a negative * prediction.

Output values greater than or equal to the threshold receive * a positive result from the MLModel, such as true. Output values * less than the threshold receive a negative response from the MLModel, such as * false.

*/ inline double GetScoreThreshold() const{ return m_scoreThreshold; } /** *

The scoring threshold is used in binary classification MLModel * models. It marks the boundary between a positive prediction and a negative * prediction.

Output values greater than or equal to the threshold receive * a positive result from the MLModel, such as true. Output values * less than the threshold receive a negative response from the MLModel, such as * false.

*/ inline void SetScoreThreshold(double value) { m_scoreThreshold = value; } /** *

The scoring threshold is used in binary classification MLModel * models. It marks the boundary between a positive prediction and a negative * prediction.

Output values greater than or equal to the threshold receive * a positive result from the MLModel, such as true. Output values * less than the threshold receive a negative response from the MLModel, such as * false.

*/ inline GetMLModelResult& WithScoreThreshold(double value) { SetScoreThreshold(value); return *this;} /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline const Aws::Utils::DateTime& GetScoreThresholdLastUpdatedAt() const{ return m_scoreThresholdLastUpdatedAt; } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline void SetScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { m_scoreThresholdLastUpdatedAt = value; } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline void SetScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { m_scoreThresholdLastUpdatedAt = std::move(value); } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline GetMLModelResult& WithScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { SetScoreThresholdLastUpdatedAt(value); return *this;} /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline GetMLModelResult& WithScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { SetScoreThresholdLastUpdatedAt(std::move(value)); return *this;} /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline const Aws::String& GetLogUri() const{ return m_logUri; } /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline void SetLogUri(const Aws::String& value) { m_logUri = value; } /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline void SetLogUri(Aws::String&& value) { m_logUri = std::move(value); } /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline void SetLogUri(const char* value) { m_logUri.assign(value); } /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline GetMLModelResult& WithLogUri(const Aws::String& value) { SetLogUri(value); return *this;} /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline GetMLModelResult& WithLogUri(Aws::String&& value) { SetLogUri(std::move(value)); return *this;} /** *

A link to the file that contains logs of the CreateMLModel * operation.

*/ inline GetMLModelResult& WithLogUri(const char* value) { SetLogUri(value); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline const Aws::String& GetMessage() const{ return m_message; } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(const Aws::String& value) { m_message = value; } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(Aws::String&& value) { m_message = std::move(value); } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(const char* value) { m_message.assign(value); } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline GetMLModelResult& WithMessage(const Aws::String& value) { SetMessage(value); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline GetMLModelResult& WithMessage(Aws::String&& value) { SetMessage(std::move(value)); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline GetMLModelResult& WithMessage(const char* value) { SetMessage(value); return *this;} /** *

The approximate CPU time in milliseconds that Amazon Machine Learning spent * processing the MLModel, normalized and scaled on computation * resources. ComputeTime is only available if the * MLModel is in the COMPLETED state.

*/ inline long long GetComputeTime() const{ return m_computeTime; } /** *

The approximate CPU time in milliseconds that Amazon Machine Learning spent * processing the MLModel, normalized and scaled on computation * resources. ComputeTime is only available if the * MLModel is in the COMPLETED state.

*/ inline void SetComputeTime(long long value) { m_computeTime = value; } /** *

The approximate CPU time in milliseconds that Amazon Machine Learning spent * processing the MLModel, normalized and scaled on computation * resources. ComputeTime is only available if the * MLModel is in the COMPLETED state.

*/ inline GetMLModelResult& WithComputeTime(long long value) { SetComputeTime(value); return *this;} /** *

The epoch time when Amazon Machine Learning marked the MLModel * as COMPLETED or FAILED. FinishedAt is * only available when the MLModel is in the COMPLETED or * FAILED state.

*/ inline const Aws::Utils::DateTime& GetFinishedAt() const{ return m_finishedAt; } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as COMPLETED or FAILED. FinishedAt is * only available when the MLModel is in the COMPLETED or * FAILED state.

*/ inline void SetFinishedAt(const Aws::Utils::DateTime& value) { m_finishedAt = value; } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as COMPLETED or FAILED. FinishedAt is * only available when the MLModel is in the COMPLETED or * FAILED state.

*/ inline void SetFinishedAt(Aws::Utils::DateTime&& value) { m_finishedAt = std::move(value); } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as COMPLETED or FAILED. FinishedAt is * only available when the MLModel is in the COMPLETED or * FAILED state.

*/ inline GetMLModelResult& WithFinishedAt(const Aws::Utils::DateTime& value) { SetFinishedAt(value); return *this;} /** *

The epoch time when Amazon Machine Learning marked the MLModel * as COMPLETED or FAILED. FinishedAt is * only available when the MLModel is in the COMPLETED or * FAILED state.

*/ inline GetMLModelResult& WithFinishedAt(Aws::Utils::DateTime&& value) { SetFinishedAt(std::move(value)); return *this;} /** *

The epoch time when Amazon Machine Learning marked the MLModel * as INPROGRESS. StartedAt isn't available if the * MLModel is in the PENDING state.

*/ inline const Aws::Utils::DateTime& GetStartedAt() const{ return m_startedAt; } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as INPROGRESS. StartedAt isn't available if the * MLModel is in the PENDING state.

*/ inline void SetStartedAt(const Aws::Utils::DateTime& value) { m_startedAt = value; } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as INPROGRESS. StartedAt isn't available if the * MLModel is in the PENDING state.

*/ inline void SetStartedAt(Aws::Utils::DateTime&& value) { m_startedAt = std::move(value); } /** *

The epoch time when Amazon Machine Learning marked the MLModel * as INPROGRESS. StartedAt isn't available if the * MLModel is in the PENDING state.

*/ inline GetMLModelResult& WithStartedAt(const Aws::Utils::DateTime& value) { SetStartedAt(value); return *this;} /** *

The epoch time when Amazon Machine Learning marked the MLModel * as INPROGRESS. StartedAt isn't available if the * MLModel is in the PENDING state.

*/ inline GetMLModelResult& WithStartedAt(Aws::Utils::DateTime&& value) { SetStartedAt(std::move(value)); return *this;} /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline const Aws::String& GetRecipe() const{ return m_recipe; } /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline void SetRecipe(const Aws::String& value) { m_recipe = value; } /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline void SetRecipe(Aws::String&& value) { m_recipe = std::move(value); } /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline void SetRecipe(const char* value) { m_recipe.assign(value); } /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline GetMLModelResult& WithRecipe(const Aws::String& value) { SetRecipe(value); return *this;} /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline GetMLModelResult& WithRecipe(Aws::String&& value) { SetRecipe(std::move(value)); return *this;} /** *

The recipe to use when training the MLModel. The * Recipe provides detailed information about the observation data to * use during training, and manipulations to perform on the observation data during * training.

Note: This parameter is provided as part of the verbose * format.

*/ inline GetMLModelResult& WithRecipe(const char* value) { SetRecipe(value); return *this;} /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline const Aws::String& GetSchema() const{ return m_schema; } /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline void SetSchema(const Aws::String& value) { m_schema = value; } /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline void SetSchema(Aws::String&& value) { m_schema = std::move(value); } /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline void SetSchema(const char* value) { m_schema.assign(value); } /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline GetMLModelResult& WithSchema(const Aws::String& value) { SetSchema(value); return *this;} /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline GetMLModelResult& WithSchema(Aws::String&& value) { SetSchema(std::move(value)); return *this;} /** *

The schema used by all of the data files referenced by the * DataSource.

Note: This parameter is provided as part * of the verbose format.

*/ inline GetMLModelResult& WithSchema(const char* value) { SetSchema(value); return *this;} inline const Aws::String& GetRequestId() const{ return m_requestId; } inline void SetRequestId(const Aws::String& value) { m_requestId = value; } inline void SetRequestId(Aws::String&& value) { m_requestId = std::move(value); } inline void SetRequestId(const char* value) { m_requestId.assign(value); } inline GetMLModelResult& WithRequestId(const Aws::String& value) { SetRequestId(value); return *this;} inline GetMLModelResult& WithRequestId(Aws::String&& value) { SetRequestId(std::move(value)); return *this;} inline GetMLModelResult& WithRequestId(const char* value) { SetRequestId(value); return *this;} private: Aws::String m_mLModelId; Aws::String m_trainingDataSourceId; Aws::String m_createdByIamUser; Aws::Utils::DateTime m_createdAt; Aws::Utils::DateTime m_lastUpdatedAt; Aws::String m_name; EntityStatus m_status; long long m_sizeInBytes; RealtimeEndpointInfo m_endpointInfo; Aws::Map m_trainingParameters; Aws::String m_inputDataLocationS3; MLModelType m_mLModelType; double m_scoreThreshold; Aws::Utils::DateTime m_scoreThresholdLastUpdatedAt; Aws::String m_logUri; Aws::String m_message; long long m_computeTime; Aws::Utils::DateTime m_finishedAt; Aws::Utils::DateTime m_startedAt; Aws::String m_recipe; Aws::String m_schema; Aws::String m_requestId; }; } // namespace Model } // namespace MachineLearning } // namespace Aws