/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace MachineLearning { namespace Model { /** *

Represents the output of a GetMLModel operation.

The * content consists of the detailed metadata and the current status of the * MLModel.

See Also:

AWS * API Reference

*/ class MLModel { public: AWS_MACHINELEARNING_API MLModel(); AWS_MACHINELEARNING_API MLModel(Aws::Utils::Json::JsonView jsonValue); AWS_MACHINELEARNING_API MLModel& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_MACHINELEARNING_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The ID assigned to the MLModel at creation.

*/ inline const Aws::String& GetMLModelId() const{ return m_mLModelId; } /** *

The ID assigned to the MLModel at creation.

*/ inline bool MLModelIdHasBeenSet() const { return m_mLModelIdHasBeenSet; } /** *

The ID assigned to the MLModel at creation.

*/ inline void SetMLModelId(const Aws::String& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = value; } /** *

The ID assigned to the MLModel at creation.

*/ inline void SetMLModelId(Aws::String&& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = std::move(value); } /** *

The ID assigned to the MLModel at creation.

*/ inline void SetMLModelId(const char* value) { m_mLModelIdHasBeenSet = true; m_mLModelId.assign(value); } /** *

The ID assigned to the MLModel at creation.

*/ inline MLModel& WithMLModelId(const Aws::String& value) { SetMLModelId(value); return *this;} /** *

The ID assigned to the MLModel at creation.

*/ inline MLModel& WithMLModelId(Aws::String&& value) { SetMLModelId(std::move(value)); return *this;} /** *

The ID assigned to the MLModel at creation.

*/ inline MLModel& WithMLModelId(const char* value) { SetMLModelId(value); return *this;} /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline const Aws::String& GetTrainingDataSourceId() const{ return m_trainingDataSourceId; } /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline bool TrainingDataSourceIdHasBeenSet() const { return m_trainingDataSourceIdHasBeenSet; } /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline void SetTrainingDataSourceId(const Aws::String& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = value; } /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline void SetTrainingDataSourceId(Aws::String&& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = std::move(value); } /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline void SetTrainingDataSourceId(const char* value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId.assign(value); } /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline MLModel& WithTrainingDataSourceId(const Aws::String& value) { SetTrainingDataSourceId(value); return *this;} /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline MLModel& WithTrainingDataSourceId(Aws::String&& value) { SetTrainingDataSourceId(std::move(value)); return *this;} /** *

The ID of the training DataSource. The * CreateMLModel operation uses the * TrainingDataSourceId.

*/ inline MLModel& WithTrainingDataSourceId(const char* value) { SetTrainingDataSourceId(value); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline const Aws::String& GetCreatedByIamUser() const{ return m_createdByIamUser; } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline bool CreatedByIamUserHasBeenSet() const { return m_createdByIamUserHasBeenSet; } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(const Aws::String& value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser = value; } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(Aws::String&& value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser = std::move(value); } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline void SetCreatedByIamUser(const char* value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser.assign(value); } /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline MLModel& WithCreatedByIamUser(const Aws::String& value) { SetCreatedByIamUser(value); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline MLModel& WithCreatedByIamUser(Aws::String&& value) { SetCreatedByIamUser(std::move(value)); return *this;} /** *

The AWS user account from which the MLModel was created. The * account type can be either an AWS root account or an AWS Identity and Access * Management (IAM) user account.

*/ inline MLModel& WithCreatedByIamUser(const char* value) { SetCreatedByIamUser(value); return *this;} /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline const Aws::Utils::DateTime& GetCreatedAt() const{ return m_createdAt; } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline bool CreatedAtHasBeenSet() const { return m_createdAtHasBeenSet; } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline void SetCreatedAt(const Aws::Utils::DateTime& value) { m_createdAtHasBeenSet = true; m_createdAt = value; } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline void SetCreatedAt(Aws::Utils::DateTime&& value) { m_createdAtHasBeenSet = true; m_createdAt = std::move(value); } /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline MLModel& WithCreatedAt(const Aws::Utils::DateTime& value) { SetCreatedAt(value); return *this;} /** *

The time that the MLModel was created. The time is expressed in * epoch time.

*/ inline MLModel& WithCreatedAt(Aws::Utils::DateTime&& value) { SetCreatedAt(std::move(value)); return *this;} /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline const Aws::Utils::DateTime& GetLastUpdatedAt() const{ return m_lastUpdatedAt; } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline bool LastUpdatedAtHasBeenSet() const { return m_lastUpdatedAtHasBeenSet; } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline void SetLastUpdatedAt(const Aws::Utils::DateTime& value) { m_lastUpdatedAtHasBeenSet = true; m_lastUpdatedAt = value; } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline void SetLastUpdatedAt(Aws::Utils::DateTime&& value) { m_lastUpdatedAtHasBeenSet = true; m_lastUpdatedAt = std::move(value); } /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline MLModel& WithLastUpdatedAt(const Aws::Utils::DateTime& value) { SetLastUpdatedAt(value); return *this;} /** *

The time of the most recent edit to the MLModel. The time is * expressed in epoch time.

*/ inline MLModel& WithLastUpdatedAt(Aws::Utils::DateTime&& value) { SetLastUpdatedAt(std::move(value)); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline const Aws::String& GetName() const{ return m_name; } /** *

A user-supplied name or description of the MLModel.

*/ inline bool NameHasBeenSet() const { return m_nameHasBeenSet; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); } /** *

A user-supplied name or description of the MLModel.

*/ inline MLModel& WithName(const Aws::String& value) { SetName(value); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline MLModel& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;} /** *

A user-supplied name or description of the MLModel.

*/ inline MLModel& WithName(const char* value) { SetName(value); return *this;} /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline const EntityStatus& GetStatus() const{ return m_status; } /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline bool StatusHasBeenSet() const { return m_statusHasBeenSet; } /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline void SetStatus(const EntityStatus& value) { m_statusHasBeenSet = true; m_status = value; } /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline void SetStatus(EntityStatus&& value) { m_statusHasBeenSet = true; m_status = std::move(value); } /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline MLModel& WithStatus(const EntityStatus& value) { SetStatus(value); return *this;} /** *

The current status of an MLModel. This element can have one of * the following values:

  • PENDING - Amazon Machine * Learning (Amazon ML) submitted a request to create an MLModel.

    *
  • INPROGRESS - The creation process is underway.

    *
  • FAILED - The request to create an * MLModel didn't run to completion. The model isn't usable.

  • *
  • COMPLETED - The creation process completed * successfully.

  • DELETED - The MLModel * is marked as deleted. It isn't usable.

*/ inline MLModel& WithStatus(EntityStatus&& value) { SetStatus(std::move(value)); return *this;} inline long long GetSizeInBytes() const{ return m_sizeInBytes; } inline bool SizeInBytesHasBeenSet() const { return m_sizeInBytesHasBeenSet; } inline void SetSizeInBytes(long long value) { m_sizeInBytesHasBeenSet = true; m_sizeInBytes = value; } inline MLModel& WithSizeInBytes(long long value) { SetSizeInBytes(value); return *this;} /** *

The current endpoint of the MLModel.

*/ inline const RealtimeEndpointInfo& GetEndpointInfo() const{ return m_endpointInfo; } /** *

The current endpoint of the MLModel.

*/ inline bool EndpointInfoHasBeenSet() const { return m_endpointInfoHasBeenSet; } /** *

The current endpoint of the MLModel.

*/ inline void SetEndpointInfo(const RealtimeEndpointInfo& value) { m_endpointInfoHasBeenSet = true; m_endpointInfo = value; } /** *

The current endpoint of the MLModel.

*/ inline void SetEndpointInfo(RealtimeEndpointInfo&& value) { m_endpointInfoHasBeenSet = true; m_endpointInfo = std::move(value); } /** *

The current endpoint of the MLModel.

*/ inline MLModel& WithEndpointInfo(const RealtimeEndpointInfo& value) { SetEndpointInfo(value); return *this;} /** *

The current endpoint of the MLModel.

*/ inline MLModel& WithEndpointInfo(RealtimeEndpointInfo&& value) { SetEndpointInfo(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline const Aws::Map& GetTrainingParameters() const{ return m_trainingParameters; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline bool TrainingParametersHasBeenSet() const { return m_trainingParametersHasBeenSet; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetTrainingParameters(const Aws::Map& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters = value; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline void SetTrainingParameters(Aws::Map&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters = std::move(value); } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& WithTrainingParameters(const Aws::Map& value) { SetTrainingParameters(value); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& WithTrainingParameters(Aws::Map&& value) { SetTrainingParameters(std::move(value)); return *this;} /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(const Aws::String& key, const Aws::String& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(Aws::String&& key, const Aws::String& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(const Aws::String& key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(Aws::String&& key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(const char* key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, std::move(value)); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(Aws::String&& key, const char* value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), value); return *this; } /** *

A list of the training parameters in the MLModel. The list is * implemented as a map of key-value pairs.

The following is the current set * of training parameters:

  • sgd.maxMLModelSizeInBytes * - The maximum allowed size of the model. Depending on the input data, the size * of the model might affect its performance.

    The value is an integer that * ranges from 100000 to 2147483648. The default value is * 33554432.

  • sgd.maxPasses - The * number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from * 1 to 10000. The default value is 10.

    *
  • sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are auto and * none. The default value is none.

  • * sgd.l1RegularizationAmount - The coefficient regularization L1 * norm, which controls overfitting the data by penalizing large coefficients. This * parameter tends to drive coefficients to zero, resulting in sparse feature set. * If you use this parameter, start by specifying a small value, such as * 1.0E-08.

    The value is a double that ranges from * 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. * Use this parameter sparingly.

  • * sgd.l2RegularizationAmount - The coefficient regularization L2 * norm, which controls overfitting the data by penalizing large coefficients. This * tends to drive coefficients to small, nonzero values. If you use this parameter, * start by specifying a small value, such as 1.0E-08.

    The * value is a double that ranges from 0 to MAX_DOUBLE. * The default is to not use L2 normalization. This parameter can't be used when * L1 is specified. Use this parameter sparingly.

*/ inline MLModel& AddTrainingParameters(const char* key, const char* value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, value); return *this; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline const Aws::String& GetInputDataLocationS3() const{ return m_inputDataLocationS3; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline bool InputDataLocationS3HasBeenSet() const { return m_inputDataLocationS3HasBeenSet; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(const Aws::String& value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3 = value; } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(Aws::String&& value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3 = std::move(value); } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline void SetInputDataLocationS3(const char* value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3.assign(value); } /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline MLModel& WithInputDataLocationS3(const Aws::String& value) { SetInputDataLocationS3(value); return *this;} /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline MLModel& WithInputDataLocationS3(Aws::String&& value) { SetInputDataLocationS3(std::move(value)); return *this;} /** *

The location of the data file or directory in Amazon Simple Storage Service * (Amazon S3).

*/ inline MLModel& WithInputDataLocationS3(const char* value) { SetInputDataLocationS3(value); return *this;} /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline const Algorithm& GetAlgorithm() const{ return m_algorithm; } /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline bool AlgorithmHasBeenSet() const { return m_algorithmHasBeenSet; } /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline void SetAlgorithm(const Algorithm& value) { m_algorithmHasBeenSet = true; m_algorithm = value; } /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline void SetAlgorithm(Algorithm&& value) { m_algorithmHasBeenSet = true; m_algorithm = std::move(value); } /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline MLModel& WithAlgorithm(const Algorithm& value) { SetAlgorithm(value); return *this;} /** *

The algorithm used to train the MLModel. The following algorithm * is supported:

  • SGD -- Stochastic gradient descent. * The goal of SGD is to minimize the gradient of the loss function. *

*/ inline MLModel& WithAlgorithm(Algorithm&& value) { SetAlgorithm(std::move(value)); return *this;} /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline const MLModelType& GetMLModelType() const{ return m_mLModelType; } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline bool MLModelTypeHasBeenSet() const { return m_mLModelTypeHasBeenSet; } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline void SetMLModelType(const MLModelType& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = value; } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline void SetMLModelType(MLModelType&& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = std::move(value); } /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline MLModel& WithMLModelType(const MLModelType& value) { SetMLModelType(value); return *this;} /** *

Identifies the MLModel category. The following are the available * types:

  • REGRESSION - Produces a numeric result. * For example, "What price should a house be listed at?"

  • * BINARY - Produces one of two possible results. For example, "Is * this a child-friendly web site?".

  • MULTICLASS - * Produces one of several possible results. For example, "Is this a HIGH-, LOW-, * or MEDIUM-risk trade?".

*/ inline MLModel& WithMLModelType(MLModelType&& value) { SetMLModelType(std::move(value)); return *this;} inline double GetScoreThreshold() const{ return m_scoreThreshold; } inline bool ScoreThresholdHasBeenSet() const { return m_scoreThresholdHasBeenSet; } inline void SetScoreThreshold(double value) { m_scoreThresholdHasBeenSet = true; m_scoreThreshold = value; } inline MLModel& WithScoreThreshold(double value) { SetScoreThreshold(value); return *this;} /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline const Aws::Utils::DateTime& GetScoreThresholdLastUpdatedAt() const{ return m_scoreThresholdLastUpdatedAt; } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline bool ScoreThresholdLastUpdatedAtHasBeenSet() const { return m_scoreThresholdLastUpdatedAtHasBeenSet; } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline void SetScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { m_scoreThresholdLastUpdatedAtHasBeenSet = true; m_scoreThresholdLastUpdatedAt = value; } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline void SetScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { m_scoreThresholdLastUpdatedAtHasBeenSet = true; m_scoreThresholdLastUpdatedAt = std::move(value); } /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline MLModel& WithScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { SetScoreThresholdLastUpdatedAt(value); return *this;} /** *

The time of the most recent edit to the ScoreThreshold. The time * is expressed in epoch time.

*/ inline MLModel& WithScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { SetScoreThresholdLastUpdatedAt(std::move(value)); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline const Aws::String& GetMessage() const{ return m_message; } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline bool MessageHasBeenSet() const { return m_messageHasBeenSet; } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(const Aws::String& value) { m_messageHasBeenSet = true; m_message = value; } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(Aws::String&& value) { m_messageHasBeenSet = true; m_message = std::move(value); } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline void SetMessage(const char* value) { m_messageHasBeenSet = true; m_message.assign(value); } /** *

A description of the most recent details about accessing the * MLModel.

*/ inline MLModel& WithMessage(const Aws::String& value) { SetMessage(value); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline MLModel& WithMessage(Aws::String&& value) { SetMessage(std::move(value)); return *this;} /** *

A description of the most recent details about accessing the * MLModel.

*/ inline MLModel& WithMessage(const char* value) { SetMessage(value); return *this;} inline long long GetComputeTime() const{ return m_computeTime; } inline bool ComputeTimeHasBeenSet() const { return m_computeTimeHasBeenSet; } inline void SetComputeTime(long long value) { m_computeTimeHasBeenSet = true; m_computeTime = value; } inline MLModel& WithComputeTime(long long value) { SetComputeTime(value); return *this;} inline const Aws::Utils::DateTime& GetFinishedAt() const{ return m_finishedAt; } inline bool FinishedAtHasBeenSet() const { return m_finishedAtHasBeenSet; } inline void SetFinishedAt(const Aws::Utils::DateTime& value) { m_finishedAtHasBeenSet = true; m_finishedAt = value; } inline void SetFinishedAt(Aws::Utils::DateTime&& value) { m_finishedAtHasBeenSet = true; m_finishedAt = std::move(value); } inline MLModel& WithFinishedAt(const Aws::Utils::DateTime& value) { SetFinishedAt(value); return *this;} inline MLModel& WithFinishedAt(Aws::Utils::DateTime&& value) { SetFinishedAt(std::move(value)); return *this;} inline const Aws::Utils::DateTime& GetStartedAt() const{ return m_startedAt; } inline bool StartedAtHasBeenSet() const { return m_startedAtHasBeenSet; } inline void SetStartedAt(const Aws::Utils::DateTime& value) { m_startedAtHasBeenSet = true; m_startedAt = value; } inline void SetStartedAt(Aws::Utils::DateTime&& value) { m_startedAtHasBeenSet = true; m_startedAt = std::move(value); } inline MLModel& WithStartedAt(const Aws::Utils::DateTime& value) { SetStartedAt(value); return *this;} inline MLModel& WithStartedAt(Aws::Utils::DateTime&& value) { SetStartedAt(std::move(value)); return *this;} private: Aws::String m_mLModelId; bool m_mLModelIdHasBeenSet = false; Aws::String m_trainingDataSourceId; bool m_trainingDataSourceIdHasBeenSet = false; Aws::String m_createdByIamUser; bool m_createdByIamUserHasBeenSet = false; Aws::Utils::DateTime m_createdAt; bool m_createdAtHasBeenSet = false; Aws::Utils::DateTime m_lastUpdatedAt; bool m_lastUpdatedAtHasBeenSet = false; Aws::String m_name; bool m_nameHasBeenSet = false; EntityStatus m_status; bool m_statusHasBeenSet = false; long long m_sizeInBytes; bool m_sizeInBytesHasBeenSet = false; RealtimeEndpointInfo m_endpointInfo; bool m_endpointInfoHasBeenSet = false; Aws::Map m_trainingParameters; bool m_trainingParametersHasBeenSet = false; Aws::String m_inputDataLocationS3; bool m_inputDataLocationS3HasBeenSet = false; Algorithm m_algorithm; bool m_algorithmHasBeenSet = false; MLModelType m_mLModelType; bool m_mLModelTypeHasBeenSet = false; double m_scoreThreshold; bool m_scoreThresholdHasBeenSet = false; Aws::Utils::DateTime m_scoreThresholdLastUpdatedAt; bool m_scoreThresholdLastUpdatedAtHasBeenSet = false; Aws::String m_message; bool m_messageHasBeenSet = false; long long m_computeTime; bool m_computeTimeHasBeenSet = false; Aws::Utils::DateTime m_finishedAt; bool m_finishedAtHasBeenSet = false; Aws::Utils::DateTime m_startedAt; bool m_startedAtHasBeenSet = false; }; } // namespace Model } // namespace MachineLearning } // namespace Aws