/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace Rekognition { namespace Model { /** *

The predicted gender of a detected face.

Amazon Rekognition makes * gender binary (male/female) predictions based on the physical appearance of a * face in a particular image. This kind of prediction is not designed to * categorize a person’s gender identity, and you shouldn't use Amazon Rekognition * to make such a determination. For example, a male actor wearing a long-haired * wig and earrings for a role might be predicted as female.

Using Amazon * Rekognition to make gender binary predictions is best suited for use cases where * aggregate gender distribution statistics need to be analyzed without identifying * specific users. For example, the percentage of female users compared to male * users on a social media platform.

We don't recommend using gender binary * predictions to make decisions that impact an individual's rights, privacy, or * access to services.

See Also:

AWS * API Reference

*/ class Gender { public: AWS_REKOGNITION_API Gender(); AWS_REKOGNITION_API Gender(Aws::Utils::Json::JsonView jsonValue); AWS_REKOGNITION_API Gender& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_REKOGNITION_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The predicted gender of the face.

*/ inline const GenderType& GetValue() const{ return m_value; } /** *

The predicted gender of the face.

*/ inline bool ValueHasBeenSet() const { return m_valueHasBeenSet; } /** *

The predicted gender of the face.

*/ inline void SetValue(const GenderType& value) { m_valueHasBeenSet = true; m_value = value; } /** *

The predicted gender of the face.

*/ inline void SetValue(GenderType&& value) { m_valueHasBeenSet = true; m_value = std::move(value); } /** *

The predicted gender of the face.

*/ inline Gender& WithValue(const GenderType& value) { SetValue(value); return *this;} /** *

The predicted gender of the face.

*/ inline Gender& WithValue(GenderType&& value) { SetValue(std::move(value)); return *this;} /** *

Level of confidence in the prediction.

*/ inline double GetConfidence() const{ return m_confidence; } /** *

Level of confidence in the prediction.

*/ inline bool ConfidenceHasBeenSet() const { return m_confidenceHasBeenSet; } /** *

Level of confidence in the prediction.

*/ inline void SetConfidence(double value) { m_confidenceHasBeenSet = true; m_confidence = value; } /** *

Level of confidence in the prediction.

*/ inline Gender& WithConfidence(double value) { SetConfidence(value); return *this;} private: GenderType m_value; bool m_valueHasBeenSet = false; double m_confidence; bool m_confidenceHasBeenSet = false; }; } // namespace Model } // namespace Rekognition } // namespace Aws