/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Specifies the training algorithm to use in a CreateTrainingJob
* request. For more information about algorithms provided by SageMaker, see
* Algorithms.
* For information about using your own algorithms, see Using
* Your Own Algorithms with Amazon SageMaker. See Also:
AWS
* API Reference
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The registry path of the Docker image that contains the training algorithm.
* For information about docker registry paths for SageMaker built-in algorithms,
* see Docker
* Registry Paths and Example Code in the Amazon SageMaker developer
* guide. SageMaker supports both registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information about using your custom training container, see Using
* Your Own Algorithms with Amazon SageMaker.
You must specify
* either the algorithm name to the AlgorithmName
parameter or the
* image URI of the algorithm container to the TrainingImage
* parameter.
For more information, see the note in the
* AlgorithmName
parameter description.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
The name of the algorithm resource to use for the training job. This must be * an algorithm resource that you created or subscribe to on Amazon Web Services * Marketplace.
You must specify either the algorithm name to the
* AlgorithmName
parameter or the image URI of the algorithm container
* to the TrainingImage
parameter.
Note that the
* AlgorithmName
parameter is mutually exclusive with the
* TrainingImage
parameter. If you specify a value for the
* AlgorithmName
parameter, you can't specify a value for
* TrainingImage
, and vice versa.
If you specify values for
* both parameters, the training job might break; if you don't specify any value
* for both parameters, the training job might raise a null
error.
A list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline const Aws::VectorA list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline bool MetricDefinitionsHasBeenSet() const { return m_metricDefinitionsHasBeenSet; } /** *A list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline void SetMetricDefinitions(const Aws::VectorA list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline void SetMetricDefinitions(Aws::VectorA list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline AlgorithmSpecification& WithMetricDefinitions(const Aws::VectorA list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline AlgorithmSpecification& WithMetricDefinitions(Aws::VectorA list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline AlgorithmSpecification& AddMetricDefinitions(const MetricDefinition& value) { m_metricDefinitionsHasBeenSet = true; m_metricDefinitions.push_back(value); return *this; } /** *A list of metric definition objects. Each object specifies the metric name * and regular expressions used to parse algorithm logs. SageMaker publishes each * metric to Amazon CloudWatch.
*/ inline AlgorithmSpecification& AddMetricDefinitions(MetricDefinition&& value) { m_metricDefinitionsHasBeenSet = true; m_metricDefinitions.push_back(std::move(value)); return *this; } /** *To generate and save time-series metrics during training, set to
* true
. The default is false
and time-series metrics
* aren't generated except in the following cases:
You use one of * the SageMaker built-in algorithms
You use one of the following * Prebuilt * SageMaker Docker Images:
Tensorflow (version >= * 1.15)
MXNet (version >= 1.6)
PyTorch * (version >= 1.3)
You specify at least one MetricDefinition *
To generate and save time-series metrics during training, set to
* true
. The default is false
and time-series metrics
* aren't generated except in the following cases:
You use one of * the SageMaker built-in algorithms
You use one of the following * Prebuilt * SageMaker Docker Images:
Tensorflow (version >= * 1.15)
MXNet (version >= 1.6)
PyTorch * (version >= 1.3)
You specify at least one MetricDefinition *
To generate and save time-series metrics during training, set to
* true
. The default is false
and time-series metrics
* aren't generated except in the following cases:
You use one of * the SageMaker built-in algorithms
You use one of the following * Prebuilt * SageMaker Docker Images:
Tensorflow (version >= * 1.15)
MXNet (version >= 1.6)
PyTorch * (version >= 1.3)
You specify at least one MetricDefinition *
To generate and save time-series metrics during training, set to
* true
. The default is false
and time-series metrics
* aren't generated except in the following cases:
You use one of * the SageMaker built-in algorithms
You use one of the following * Prebuilt * SageMaker Docker Images:
Tensorflow (version >= * 1.15)
MXNet (version >= 1.6)
PyTorch * (version >= 1.3)
You specify at least one MetricDefinition *
The entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline const Aws::VectorThe entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline bool ContainerEntrypointHasBeenSet() const { return m_containerEntrypointHasBeenSet; } /** *The entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline void SetContainerEntrypoint(const Aws::VectorThe entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline void SetContainerEntrypoint(Aws::VectorThe entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline AlgorithmSpecification& WithContainerEntrypoint(const Aws::VectorThe entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline AlgorithmSpecification& WithContainerEntrypoint(Aws::VectorThe entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline AlgorithmSpecification& AddContainerEntrypoint(const Aws::String& value) { m_containerEntrypointHasBeenSet = true; m_containerEntrypoint.push_back(value); return *this; } /** *The entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline AlgorithmSpecification& AddContainerEntrypoint(Aws::String&& value) { m_containerEntrypointHasBeenSet = true; m_containerEntrypoint.push_back(std::move(value)); return *this; } /** *The entrypoint * script for a Docker container used to run a training job. This script takes * precedence over the default train processing instructions. See How * Amazon SageMaker Runs Your Training Image for more information.
*/ inline AlgorithmSpecification& AddContainerEntrypoint(const char* value) { m_containerEntrypointHasBeenSet = true; m_containerEntrypoint.push_back(value); return *this; } /** *The arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline const Aws::VectorThe arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline bool ContainerArgumentsHasBeenSet() const { return m_containerArgumentsHasBeenSet; } /** *The arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline void SetContainerArguments(const Aws::VectorThe arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline void SetContainerArguments(Aws::VectorThe arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline AlgorithmSpecification& WithContainerArguments(const Aws::VectorThe arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline AlgorithmSpecification& WithContainerArguments(Aws::VectorThe arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline AlgorithmSpecification& AddContainerArguments(const Aws::String& value) { m_containerArgumentsHasBeenSet = true; m_containerArguments.push_back(value); return *this; } /** *The arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline AlgorithmSpecification& AddContainerArguments(Aws::String&& value) { m_containerArgumentsHasBeenSet = true; m_containerArguments.push_back(std::move(value)); return *this; } /** *The arguments for a container used to run a training job. See How * Amazon SageMaker Runs Your Training Image for additional information.
*/ inline AlgorithmSpecification& AddContainerArguments(const char* value) { m_containerArgumentsHasBeenSet = true; m_containerArguments.push_back(value); return *this; } /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline const TrainingImageConfig& GetTrainingImageConfig() const{ return m_trainingImageConfig; } /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline bool TrainingImageConfigHasBeenSet() const { return m_trainingImageConfigHasBeenSet; } /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline void SetTrainingImageConfig(const TrainingImageConfig& value) { m_trainingImageConfigHasBeenSet = true; m_trainingImageConfig = value; } /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline void SetTrainingImageConfig(TrainingImageConfig&& value) { m_trainingImageConfigHasBeenSet = true; m_trainingImageConfig = std::move(value); } /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline AlgorithmSpecification& WithTrainingImageConfig(const TrainingImageConfig& value) { SetTrainingImageConfig(value); return *this;} /** *The configuration to use an image from a private Docker registry for a * training job.
*/ inline AlgorithmSpecification& WithTrainingImageConfig(TrainingImageConfig&& value) { SetTrainingImageConfig(std::move(value)); return *this;} private: Aws::String m_trainingImage; bool m_trainingImageHasBeenSet = false; Aws::String m_algorithmName; bool m_algorithmNameHasBeenSet = false; TrainingInputMode m_trainingInputMode; bool m_trainingInputModeHasBeenSet = false; Aws::Vector