/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace SageMaker { namespace Model { /** *

Stores the configuration information for how model candidates are generated * using an AutoML job V2.

See Also:

AWS * API Reference

*/ class CandidateGenerationConfig { public: AWS_SAGEMAKER_API CandidateGenerationConfig(); AWS_SAGEMAKER_API CandidateGenerationConfig(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API CandidateGenerationConfig& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline const Aws::Vector& GetAlgorithmsConfig() const{ return m_algorithmsConfig; } /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline bool AlgorithmsConfigHasBeenSet() const { return m_algorithmsConfigHasBeenSet; } /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline void SetAlgorithmsConfig(const Aws::Vector& value) { m_algorithmsConfigHasBeenSet = true; m_algorithmsConfig = value; } /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline void SetAlgorithmsConfig(Aws::Vector&& value) { m_algorithmsConfigHasBeenSet = true; m_algorithmsConfig = std::move(value); } /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline CandidateGenerationConfig& WithAlgorithmsConfig(const Aws::Vector& value) { SetAlgorithmsConfig(value); return *this;} /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline CandidateGenerationConfig& WithAlgorithmsConfig(Aws::Vector&& value) { SetAlgorithmsConfig(std::move(value)); return *this;} /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline CandidateGenerationConfig& AddAlgorithmsConfig(const AutoMLAlgorithmConfig& value) { m_algorithmsConfigHasBeenSet = true; m_algorithmsConfig.push_back(value); return *this; } /** *

Stores the configuration information for the selection of algorithms used to * train model candidates on tabular data.

The list of available algorithms * to choose from depends on the training mode set in * TabularJobConfig.Mode .

  • * AlgorithmsConfig should not be set in AUTO training * mode.

  • When AlgorithmsConfig is provided, one * AutoMLAlgorithms attribute must be set and one only.

    If the * list of algorithms provided as values for AutoMLAlgorithms is * empty, CandidateGenerationConfig uses the full set of algorithms * for the given training mode.

  • When * AlgorithmsConfig is not provided, * CandidateGenerationConfig uses the full set of algorithms for the * given training mode.

For the list of all algorithms per * problem type and training mode, see * AutoMLAlgorithmConfig.

For more information on each algorithm, see * the Algorithm * support section in Autopilot developer guide.

*/ inline CandidateGenerationConfig& AddAlgorithmsConfig(AutoMLAlgorithmConfig&& value) { m_algorithmsConfigHasBeenSet = true; m_algorithmsConfig.push_back(std::move(value)); return *this; } private: Aws::Vector m_algorithmsConfig; bool m_algorithmsConfigHasBeenSet = false; }; } // namespace Model } // namespace SageMaker } // namespace Aws