/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace SageMaker { namespace Model { /** *

The inference configuration parameter for the model container.

See * Also:

AWS * API Reference

*/ class ClarifyInferenceConfig { public: AWS_SAGEMAKER_API ClarifyInferenceConfig(); AWS_SAGEMAKER_API ClarifyInferenceConfig(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API ClarifyInferenceConfig& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline const Aws::String& GetFeaturesAttribute() const{ return m_featuresAttribute; } /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline bool FeaturesAttributeHasBeenSet() const { return m_featuresAttributeHasBeenSet; } /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline void SetFeaturesAttribute(const Aws::String& value) { m_featuresAttributeHasBeenSet = true; m_featuresAttribute = value; } /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline void SetFeaturesAttribute(Aws::String&& value) { m_featuresAttributeHasBeenSet = true; m_featuresAttribute = std::move(value); } /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline void SetFeaturesAttribute(const char* value) { m_featuresAttributeHasBeenSet = true; m_featuresAttribute.assign(value); } /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline ClarifyInferenceConfig& WithFeaturesAttribute(const Aws::String& value) { SetFeaturesAttribute(value); return *this;} /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline ClarifyInferenceConfig& WithFeaturesAttribute(Aws::String&& value) { SetFeaturesAttribute(std::move(value)); return *this;} /** *

Provides the JMESPath expression to extract the features from a model * container input in JSON Lines format. For example, if * FeaturesAttribute is the JMESPath expression * 'myfeatures', it extracts a list of features [1,2,3] * from request data '{"myfeatures":[1,2,3]}'.

*/ inline ClarifyInferenceConfig& WithFeaturesAttribute(const char* value) { SetFeaturesAttribute(value); return *this;} /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline const Aws::String& GetContentTemplate() const{ return m_contentTemplate; } /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline bool ContentTemplateHasBeenSet() const { return m_contentTemplateHasBeenSet; } /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline void SetContentTemplate(const Aws::String& value) { m_contentTemplateHasBeenSet = true; m_contentTemplate = value; } /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline void SetContentTemplate(Aws::String&& value) { m_contentTemplateHasBeenSet = true; m_contentTemplate = std::move(value); } /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline void SetContentTemplate(const char* value) { m_contentTemplateHasBeenSet = true; m_contentTemplate.assign(value); } /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline ClarifyInferenceConfig& WithContentTemplate(const Aws::String& value) { SetContentTemplate(value); return *this;} /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline ClarifyInferenceConfig& WithContentTemplate(Aws::String&& value) { SetContentTemplate(std::move(value)); return *this;} /** *

A template string used to format a JSON record into an acceptable model * container input. For example, a ContentTemplate string * '{"myfeatures":$features}' will format a list of features * [1,2,3] into the record string * '{"myfeatures":[1,2,3]}'. Required only when the model container * input is in JSON Lines format.

*/ inline ClarifyInferenceConfig& WithContentTemplate(const char* value) { SetContentTemplate(value); return *this;} /** *

The maximum number of records in a request that the model container can * process when querying the model container for the predictions of a synthetic * dataset. A record is a unit of input data that inference can be made on, for * example, a single line in CSV data. If MaxRecordCount is * 1, the model container expects one record per request. A value of 2 * or greater means that the model expects batch requests, which can reduce * overhead and speed up the inferencing process. If this parameter is not * provided, the explainer will tune the record count per request according to the * model container's capacity at runtime.

*/ inline int GetMaxRecordCount() const{ return m_maxRecordCount; } /** *

The maximum number of records in a request that the model container can * process when querying the model container for the predictions of a synthetic * dataset. A record is a unit of input data that inference can be made on, for * example, a single line in CSV data. If MaxRecordCount is * 1, the model container expects one record per request. A value of 2 * or greater means that the model expects batch requests, which can reduce * overhead and speed up the inferencing process. If this parameter is not * provided, the explainer will tune the record count per request according to the * model container's capacity at runtime.

*/ inline bool MaxRecordCountHasBeenSet() const { return m_maxRecordCountHasBeenSet; } /** *

The maximum number of records in a request that the model container can * process when querying the model container for the predictions of a synthetic * dataset. A record is a unit of input data that inference can be made on, for * example, a single line in CSV data. If MaxRecordCount is * 1, the model container expects one record per request. A value of 2 * or greater means that the model expects batch requests, which can reduce * overhead and speed up the inferencing process. If this parameter is not * provided, the explainer will tune the record count per request according to the * model container's capacity at runtime.

*/ inline void SetMaxRecordCount(int value) { m_maxRecordCountHasBeenSet = true; m_maxRecordCount = value; } /** *

The maximum number of records in a request that the model container can * process when querying the model container for the predictions of a synthetic * dataset. A record is a unit of input data that inference can be made on, for * example, a single line in CSV data. If MaxRecordCount is * 1, the model container expects one record per request. A value of 2 * or greater means that the model expects batch requests, which can reduce * overhead and speed up the inferencing process. If this parameter is not * provided, the explainer will tune the record count per request according to the * model container's capacity at runtime.

*/ inline ClarifyInferenceConfig& WithMaxRecordCount(int value) { SetMaxRecordCount(value); return *this;} /** *

The maximum payload size (MB) allowed of a request from the explainer to the * model container. Defaults to 6 MB.

*/ inline int GetMaxPayloadInMB() const{ return m_maxPayloadInMB; } /** *

The maximum payload size (MB) allowed of a request from the explainer to the * model container. Defaults to 6 MB.

*/ inline bool MaxPayloadInMBHasBeenSet() const { return m_maxPayloadInMBHasBeenSet; } /** *

The maximum payload size (MB) allowed of a request from the explainer to the * model container. Defaults to 6 MB.

*/ inline void SetMaxPayloadInMB(int value) { m_maxPayloadInMBHasBeenSet = true; m_maxPayloadInMB = value; } /** *

The maximum payload size (MB) allowed of a request from the explainer to the * model container. Defaults to 6 MB.

*/ inline ClarifyInferenceConfig& WithMaxPayloadInMB(int value) { SetMaxPayloadInMB(value); return *this;} /** *

A zero-based index used to extract a probability value (score) or list from * model container output in CSV format. If this value is not provided, the entire * model container output will be treated as a probability value (score) or * list.

Example for a single class model: If the model container * output consists of a string-formatted prediction label followed by its * probability: '1,0.6', set ProbabilityIndex to * 1 to select the probability value 0.6.

* Example for a multiclass model: If the model container output consists of * a string-formatted prediction label followed by its probability: * '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * ProbabilityIndex to 1 to select the probability values * [0.1,0.6,0.3].

*/ inline int GetProbabilityIndex() const{ return m_probabilityIndex; } /** *

A zero-based index used to extract a probability value (score) or list from * model container output in CSV format. If this value is not provided, the entire * model container output will be treated as a probability value (score) or * list.

Example for a single class model: If the model container * output consists of a string-formatted prediction label followed by its * probability: '1,0.6', set ProbabilityIndex to * 1 to select the probability value 0.6.

* Example for a multiclass model: If the model container output consists of * a string-formatted prediction label followed by its probability: * '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * ProbabilityIndex to 1 to select the probability values * [0.1,0.6,0.3].

*/ inline bool ProbabilityIndexHasBeenSet() const { return m_probabilityIndexHasBeenSet; } /** *

A zero-based index used to extract a probability value (score) or list from * model container output in CSV format. If this value is not provided, the entire * model container output will be treated as a probability value (score) or * list.

Example for a single class model: If the model container * output consists of a string-formatted prediction label followed by its * probability: '1,0.6', set ProbabilityIndex to * 1 to select the probability value 0.6.

* Example for a multiclass model: If the model container output consists of * a string-formatted prediction label followed by its probability: * '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * ProbabilityIndex to 1 to select the probability values * [0.1,0.6,0.3].

*/ inline void SetProbabilityIndex(int value) { m_probabilityIndexHasBeenSet = true; m_probabilityIndex = value; } /** *

A zero-based index used to extract a probability value (score) or list from * model container output in CSV format. If this value is not provided, the entire * model container output will be treated as a probability value (score) or * list.

Example for a single class model: If the model container * output consists of a string-formatted prediction label followed by its * probability: '1,0.6', set ProbabilityIndex to * 1 to select the probability value 0.6.

* Example for a multiclass model: If the model container output consists of * a string-formatted prediction label followed by its probability: * '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * ProbabilityIndex to 1 to select the probability values * [0.1,0.6,0.3].

*/ inline ClarifyInferenceConfig& WithProbabilityIndex(int value) { SetProbabilityIndex(value); return *this;} /** *

A zero-based index used to extract a label header or list of label headers * from model container output in CSV format.

Example for a multiclass * model: If the model container output consists of label headers followed by * probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * LabelIndex to 0 to select the label headers * ['cat','dog','fish'].

*/ inline int GetLabelIndex() const{ return m_labelIndex; } /** *

A zero-based index used to extract a label header or list of label headers * from model container output in CSV format.

Example for a multiclass * model: If the model container output consists of label headers followed by * probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * LabelIndex to 0 to select the label headers * ['cat','dog','fish'].

*/ inline bool LabelIndexHasBeenSet() const { return m_labelIndexHasBeenSet; } /** *

A zero-based index used to extract a label header or list of label headers * from model container output in CSV format.

Example for a multiclass * model: If the model container output consists of label headers followed by * probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * LabelIndex to 0 to select the label headers * ['cat','dog','fish'].

*/ inline void SetLabelIndex(int value) { m_labelIndexHasBeenSet = true; m_labelIndex = value; } /** *

A zero-based index used to extract a label header or list of label headers * from model container output in CSV format.

Example for a multiclass * model: If the model container output consists of label headers followed by * probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', set * LabelIndex to 0 to select the label headers * ['cat','dog','fish'].

*/ inline ClarifyInferenceConfig& WithLabelIndex(int value) { SetLabelIndex(value); return *this;} /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline const Aws::String& GetProbabilityAttribute() const{ return m_probabilityAttribute; } /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline bool ProbabilityAttributeHasBeenSet() const { return m_probabilityAttributeHasBeenSet; } /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline void SetProbabilityAttribute(const Aws::String& value) { m_probabilityAttributeHasBeenSet = true; m_probabilityAttribute = value; } /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline void SetProbabilityAttribute(Aws::String&& value) { m_probabilityAttributeHasBeenSet = true; m_probabilityAttribute = std::move(value); } /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline void SetProbabilityAttribute(const char* value) { m_probabilityAttributeHasBeenSet = true; m_probabilityAttribute.assign(value); } /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline ClarifyInferenceConfig& WithProbabilityAttribute(const Aws::String& value) { SetProbabilityAttribute(value); return *this;} /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline ClarifyInferenceConfig& WithProbabilityAttribute(Aws::String&& value) { SetProbabilityAttribute(std::move(value)); return *this;} /** *

A JMESPath expression used to extract the probability (or score) from the * model container output if the model container is in JSON Lines format.

* Example: If the model container output of a single request is * '{"predicted_label":1,"probability":0.6}', then set * ProbabilityAttribute to 'probability'.

*/ inline ClarifyInferenceConfig& WithProbabilityAttribute(const char* value) { SetProbabilityAttribute(value); return *this;} /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline const Aws::String& GetLabelAttribute() const{ return m_labelAttribute; } /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline bool LabelAttributeHasBeenSet() const { return m_labelAttributeHasBeenSet; } /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline void SetLabelAttribute(const Aws::String& value) { m_labelAttributeHasBeenSet = true; m_labelAttribute = value; } /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline void SetLabelAttribute(Aws::String&& value) { m_labelAttributeHasBeenSet = true; m_labelAttribute = std::move(value); } /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline void SetLabelAttribute(const char* value) { m_labelAttributeHasBeenSet = true; m_labelAttribute.assign(value); } /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline ClarifyInferenceConfig& WithLabelAttribute(const Aws::String& value) { SetLabelAttribute(value); return *this;} /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline ClarifyInferenceConfig& WithLabelAttribute(Aws::String&& value) { SetLabelAttribute(std::move(value)); return *this;} /** *

A JMESPath expression used to locate the list of label headers in the model * container output.

Example: If the model container output of a * batch request is * '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then * set LabelAttribute to 'labels' to extract the list of * label headers ["cat","dog","fish"]

*/ inline ClarifyInferenceConfig& WithLabelAttribute(const char* value) { SetLabelAttribute(value); return *this;} /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline const Aws::Vector& GetLabelHeaders() const{ return m_labelHeaders; } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline bool LabelHeadersHasBeenSet() const { return m_labelHeadersHasBeenSet; } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline void SetLabelHeaders(const Aws::Vector& value) { m_labelHeadersHasBeenSet = true; m_labelHeaders = value; } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline void SetLabelHeaders(Aws::Vector&& value) { m_labelHeadersHasBeenSet = true; m_labelHeaders = std::move(value); } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline ClarifyInferenceConfig& WithLabelHeaders(const Aws::Vector& value) { SetLabelHeaders(value); return *this;} /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline ClarifyInferenceConfig& WithLabelHeaders(Aws::Vector&& value) { SetLabelHeaders(std::move(value)); return *this;} /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline ClarifyInferenceConfig& AddLabelHeaders(const Aws::String& value) { m_labelHeadersHasBeenSet = true; m_labelHeaders.push_back(value); return *this; } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline ClarifyInferenceConfig& AddLabelHeaders(Aws::String&& value) { m_labelHeadersHasBeenSet = true; m_labelHeaders.push_back(std::move(value)); return *this; } /** *

For multiclass classification problems, the label headers are the names of * the classes. Otherwise, the label header is the name of the predicted label. * These are used to help readability for the output of the * InvokeEndpoint API. See the response * section under Invoke the endpoint in the Developer Guide for more * information. If there are no label headers in the model container output, * provide them manually using this parameter.

*/ inline ClarifyInferenceConfig& AddLabelHeaders(const char* value) { m_labelHeadersHasBeenSet = true; m_labelHeaders.push_back(value); return *this; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline const Aws::Vector& GetFeatureHeaders() const{ return m_featureHeaders; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline bool FeatureHeadersHasBeenSet() const { return m_featureHeadersHasBeenSet; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline void SetFeatureHeaders(const Aws::Vector& value) { m_featureHeadersHasBeenSet = true; m_featureHeaders = value; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline void SetFeatureHeaders(Aws::Vector&& value) { m_featureHeadersHasBeenSet = true; m_featureHeaders = std::move(value); } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& WithFeatureHeaders(const Aws::Vector& value) { SetFeatureHeaders(value); return *this;} /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& WithFeatureHeaders(Aws::Vector&& value) { SetFeatureHeaders(std::move(value)); return *this;} /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& AddFeatureHeaders(const Aws::String& value) { m_featureHeadersHasBeenSet = true; m_featureHeaders.push_back(value); return *this; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& AddFeatureHeaders(Aws::String&& value) { m_featureHeadersHasBeenSet = true; m_featureHeaders.push_back(std::move(value)); return *this; } /** *

The names of the features. If provided, these are included in the endpoint * response payload to help readability of the InvokeEndpoint output. * See the Response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& AddFeatureHeaders(const char* value) { m_featureHeadersHasBeenSet = true; m_featureHeaders.push_back(value); return *this; } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline const Aws::Vector& GetFeatureTypes() const{ return m_featureTypes; } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline bool FeatureTypesHasBeenSet() const { return m_featureTypesHasBeenSet; } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline void SetFeatureTypes(const Aws::Vector& value) { m_featureTypesHasBeenSet = true; m_featureTypes = value; } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline void SetFeatureTypes(Aws::Vector&& value) { m_featureTypesHasBeenSet = true; m_featureTypes = std::move(value); } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& WithFeatureTypes(const Aws::Vector& value) { SetFeatureTypes(value); return *this;} /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& WithFeatureTypes(Aws::Vector&& value) { SetFeatureTypes(std::move(value)); return *this;} /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& AddFeatureTypes(const ClarifyFeatureType& value) { m_featureTypesHasBeenSet = true; m_featureTypes.push_back(value); return *this; } /** *

A list of data types of the features (optional). Applicable only to NLP * explainability. If provided, FeatureTypes must have at least one * 'text' string (for example, ['text']). If * FeatureTypes is not provided, the explainer infers the feature * types based on the baseline data. The feature types are included in the endpoint * response payload. For additional information see the response * section under Invoke the endpoint in the Developer Guide for more * information.

*/ inline ClarifyInferenceConfig& AddFeatureTypes(ClarifyFeatureType&& value) { m_featureTypesHasBeenSet = true; m_featureTypes.push_back(std::move(value)); return *this; } private: Aws::String m_featuresAttribute; bool m_featuresAttributeHasBeenSet = false; Aws::String m_contentTemplate; bool m_contentTemplateHasBeenSet = false; int m_maxRecordCount; bool m_maxRecordCountHasBeenSet = false; int m_maxPayloadInMB; bool m_maxPayloadInMBHasBeenSet = false; int m_probabilityIndex; bool m_probabilityIndexHasBeenSet = false; int m_labelIndex; bool m_labelIndexHasBeenSet = false; Aws::String m_probabilityAttribute; bool m_probabilityAttributeHasBeenSet = false; Aws::String m_labelAttribute; bool m_labelAttributeHasBeenSet = false; Aws::Vector m_labelHeaders; bool m_labelHeadersHasBeenSet = false; Aws::Vector m_featureHeaders; bool m_featureHeadersHasBeenSet = false; Aws::Vector m_featureTypes; bool m_featureTypesHasBeenSet = false; }; } // namespace Model } // namespace SageMaker } // namespace Aws