/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace SageMaker { namespace Model { /** *

A list of continuous hyperparameters to tune.

See Also:

AWS * API Reference

*/ class ContinuousParameterRange { public: AWS_SAGEMAKER_API ContinuousParameterRange(); AWS_SAGEMAKER_API ContinuousParameterRange(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API ContinuousParameterRange& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_SAGEMAKER_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The name of the continuous hyperparameter to tune.

*/ inline const Aws::String& GetName() const{ return m_name; } /** *

The name of the continuous hyperparameter to tune.

*/ inline bool NameHasBeenSet() const { return m_nameHasBeenSet; } /** *

The name of the continuous hyperparameter to tune.

*/ inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; } /** *

The name of the continuous hyperparameter to tune.

*/ inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); } /** *

The name of the continuous hyperparameter to tune.

*/ inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); } /** *

The name of the continuous hyperparameter to tune.

*/ inline ContinuousParameterRange& WithName(const Aws::String& value) { SetName(value); return *this;} /** *

The name of the continuous hyperparameter to tune.

*/ inline ContinuousParameterRange& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;} /** *

The name of the continuous hyperparameter to tune.

*/ inline ContinuousParameterRange& WithName(const char* value) { SetName(value); return *this;} /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline const Aws::String& GetMinValue() const{ return m_minValue; } /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline bool MinValueHasBeenSet() const { return m_minValueHasBeenSet; } /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline void SetMinValue(const Aws::String& value) { m_minValueHasBeenSet = true; m_minValue = value; } /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline void SetMinValue(Aws::String&& value) { m_minValueHasBeenSet = true; m_minValue = std::move(value); } /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline void SetMinValue(const char* value) { m_minValueHasBeenSet = true; m_minValue.assign(value); } /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline ContinuousParameterRange& WithMinValue(const Aws::String& value) { SetMinValue(value); return *this;} /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline ContinuousParameterRange& WithMinValue(Aws::String&& value) { SetMinValue(std::move(value)); return *this;} /** *

The minimum value for the hyperparameter. The tuning job uses floating-point * values between this value and MaxValuefor tuning.

*/ inline ContinuousParameterRange& WithMinValue(const char* value) { SetMinValue(value); return *this;} /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline const Aws::String& GetMaxValue() const{ return m_maxValue; } /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline bool MaxValueHasBeenSet() const { return m_maxValueHasBeenSet; } /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline void SetMaxValue(const Aws::String& value) { m_maxValueHasBeenSet = true; m_maxValue = value; } /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline void SetMaxValue(Aws::String&& value) { m_maxValueHasBeenSet = true; m_maxValue = std::move(value); } /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline void SetMaxValue(const char* value) { m_maxValueHasBeenSet = true; m_maxValue.assign(value); } /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline ContinuousParameterRange& WithMaxValue(const Aws::String& value) { SetMaxValue(value); return *this;} /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline ContinuousParameterRange& WithMaxValue(Aws::String&& value) { SetMaxValue(std::move(value)); return *this;} /** *

The maximum value for the hyperparameter. The tuning job uses floating-point * values between MinValue value and this value for tuning.

*/ inline ContinuousParameterRange& WithMaxValue(const char* value) { SetMaxValue(value); return *this;} /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline const HyperParameterScalingType& GetScalingType() const{ return m_scalingType; } /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline bool ScalingTypeHasBeenSet() const { return m_scalingTypeHasBeenSet; } /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline void SetScalingType(const HyperParameterScalingType& value) { m_scalingTypeHasBeenSet = true; m_scalingType = value; } /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline void SetScalingType(HyperParameterScalingType&& value) { m_scalingTypeHasBeenSet = true; m_scalingType = std::move(value); } /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline ContinuousParameterRange& WithScalingType(const HyperParameterScalingType& value) { SetScalingType(value); return *this;} /** *

The scale that hyperparameter tuning uses to search the hyperparameter range. * For information about choosing a hyperparameter scale, see Hyperparameter * Scaling. One of the following values:

Auto
*

SageMaker hyperparameter tuning chooses the best scale for the * hyperparameter.

Linear

Hyperparameter tuning searches * the values in the hyperparameter range by using a linear scale.

*
Logarithmic

Hyperparameter tuning searches the values in the * hyperparameter range by using a logarithmic scale.

Logarithmic scaling * works only for ranges that have only values greater than 0.

*
ReverseLogarithmic

Hyperparameter tuning searches the values in * the hyperparameter range by using a reverse logarithmic scale.

Reverse * logarithmic scaling works only for ranges that are entirely within the range * 0<=x<1.0.

*/ inline ContinuousParameterRange& WithScalingType(HyperParameterScalingType&& value) { SetScalingType(std::move(value)); return *this;} private: Aws::String m_name; bool m_nameHasBeenSet = false; Aws::String m_minValue; bool m_minValueHasBeenSet = false; Aws::String m_maxValue; bool m_maxValueHasBeenSet = false; HyperParameterScalingType m_scalingType; bool m_scalingTypeHasBeenSet = false; }; } // namespace Model } // namespace SageMaker } // namespace Aws