/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Aws { template class AmazonWebServiceResult; namespace Utils { namespace Json { class JsonValue; } // namespace Json } // namespace Utils namespace SageMaker { namespace Model { class DescribeTrainingJobResult { public: AWS_SAGEMAKER_API DescribeTrainingJobResult(); AWS_SAGEMAKER_API DescribeTrainingJobResult(const Aws::AmazonWebServiceResult& result); AWS_SAGEMAKER_API DescribeTrainingJobResult& operator=(const Aws::AmazonWebServiceResult& result); /** *

Name of the model training job.

*/ inline const Aws::String& GetTrainingJobName() const{ return m_trainingJobName; } /** *

Name of the model training job.

*/ inline void SetTrainingJobName(const Aws::String& value) { m_trainingJobName = value; } /** *

Name of the model training job.

*/ inline void SetTrainingJobName(Aws::String&& value) { m_trainingJobName = std::move(value); } /** *

Name of the model training job.

*/ inline void SetTrainingJobName(const char* value) { m_trainingJobName.assign(value); } /** *

Name of the model training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobName(const Aws::String& value) { SetTrainingJobName(value); return *this;} /** *

Name of the model training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobName(Aws::String&& value) { SetTrainingJobName(std::move(value)); return *this;} /** *

Name of the model training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobName(const char* value) { SetTrainingJobName(value); return *this;} /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline const Aws::String& GetTrainingJobArn() const{ return m_trainingJobArn; } /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline void SetTrainingJobArn(const Aws::String& value) { m_trainingJobArn = value; } /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline void SetTrainingJobArn(Aws::String&& value) { m_trainingJobArn = std::move(value); } /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline void SetTrainingJobArn(const char* value) { m_trainingJobArn.assign(value); } /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobArn(const Aws::String& value) { SetTrainingJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobArn(Aws::String&& value) { SetTrainingJobArn(std::move(value)); return *this;} /** *

The Amazon Resource Name (ARN) of the training job.

*/ inline DescribeTrainingJobResult& WithTrainingJobArn(const char* value) { SetTrainingJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline const Aws::String& GetTuningJobArn() const{ return m_tuningJobArn; } /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline void SetTuningJobArn(const Aws::String& value) { m_tuningJobArn = value; } /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline void SetTuningJobArn(Aws::String&& value) { m_tuningJobArn = std::move(value); } /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline void SetTuningJobArn(const char* value) { m_tuningJobArn.assign(value); } /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline DescribeTrainingJobResult& WithTuningJobArn(const Aws::String& value) { SetTuningJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline DescribeTrainingJobResult& WithTuningJobArn(Aws::String&& value) { SetTuningJobArn(std::move(value)); return *this;} /** *

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if * the training job was launched by a hyperparameter tuning job.

*/ inline DescribeTrainingJobResult& WithTuningJobArn(const char* value) { SetTuningJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline const Aws::String& GetLabelingJobArn() const{ return m_labelingJobArn; } /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline void SetLabelingJobArn(const Aws::String& value) { m_labelingJobArn = value; } /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline void SetLabelingJobArn(Aws::String&& value) { m_labelingJobArn = std::move(value); } /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline void SetLabelingJobArn(const char* value) { m_labelingJobArn.assign(value); } /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline DescribeTrainingJobResult& WithLabelingJobArn(const Aws::String& value) { SetLabelingJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline DescribeTrainingJobResult& WithLabelingJobArn(Aws::String&& value) { SetLabelingJobArn(std::move(value)); return *this;} /** *

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job * that created the transform or training job.

*/ inline DescribeTrainingJobResult& WithLabelingJobArn(const char* value) { SetLabelingJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline const Aws::String& GetAutoMLJobArn() const{ return m_autoMLJobArn; } /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline void SetAutoMLJobArn(const Aws::String& value) { m_autoMLJobArn = value; } /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline void SetAutoMLJobArn(Aws::String&& value) { m_autoMLJobArn = std::move(value); } /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline void SetAutoMLJobArn(const char* value) { m_autoMLJobArn.assign(value); } /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline DescribeTrainingJobResult& WithAutoMLJobArn(const Aws::String& value) { SetAutoMLJobArn(value); return *this;} /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline DescribeTrainingJobResult& WithAutoMLJobArn(Aws::String&& value) { SetAutoMLJobArn(std::move(value)); return *this;} /** *

The Amazon Resource Name (ARN) of an AutoML job.

*/ inline DescribeTrainingJobResult& WithAutoMLJobArn(const char* value) { SetAutoMLJobArn(value); return *this;} /** *

Information about the Amazon S3 location that is configured for storing model * artifacts.

*/ inline const ModelArtifacts& GetModelArtifacts() const{ return m_modelArtifacts; } /** *

Information about the Amazon S3 location that is configured for storing model * artifacts.

*/ inline void SetModelArtifacts(const ModelArtifacts& value) { m_modelArtifacts = value; } /** *

Information about the Amazon S3 location that is configured for storing model * artifacts.

*/ inline void SetModelArtifacts(ModelArtifacts&& value) { m_modelArtifacts = std::move(value); } /** *

Information about the Amazon S3 location that is configured for storing model * artifacts.

*/ inline DescribeTrainingJobResult& WithModelArtifacts(const ModelArtifacts& value) { SetModelArtifacts(value); return *this;} /** *

Information about the Amazon S3 location that is configured for storing model * artifacts.

*/ inline DescribeTrainingJobResult& WithModelArtifacts(ModelArtifacts&& value) { SetModelArtifacts(std::move(value)); return *this;} /** *

The status of the training job.

SageMaker provides the following * training job statuses:

  • InProgress - The training * is in progress.

  • Completed - The training job has * completed.

  • Failed - The training job has failed. * To see the reason for the failure, see the FailureReason field in * the response to a DescribeTrainingJobResponse call.

  • *

    Stopping - The training job is stopping.

  • * Stopped - The training job has stopped.

For more * detailed information, see SecondaryStatus.

*/ inline const TrainingJobStatus& GetTrainingJobStatus() const{ return m_trainingJobStatus; } /** *

The status of the training job.

SageMaker provides the following * training job statuses:

  • InProgress - The training * is in progress.

  • Completed - The training job has * completed.

  • Failed - The training job has failed. * To see the reason for the failure, see the FailureReason field in * the response to a DescribeTrainingJobResponse call.

  • *

    Stopping - The training job is stopping.

  • * Stopped - The training job has stopped.

For more * detailed information, see SecondaryStatus.

*/ inline void SetTrainingJobStatus(const TrainingJobStatus& value) { m_trainingJobStatus = value; } /** *

The status of the training job.

SageMaker provides the following * training job statuses:

  • InProgress - The training * is in progress.

  • Completed - The training job has * completed.

  • Failed - The training job has failed. * To see the reason for the failure, see the FailureReason field in * the response to a DescribeTrainingJobResponse call.

  • *

    Stopping - The training job is stopping.

  • * Stopped - The training job has stopped.

For more * detailed information, see SecondaryStatus.

*/ inline void SetTrainingJobStatus(TrainingJobStatus&& value) { m_trainingJobStatus = std::move(value); } /** *

The status of the training job.

SageMaker provides the following * training job statuses:

  • InProgress - The training * is in progress.

  • Completed - The training job has * completed.

  • Failed - The training job has failed. * To see the reason for the failure, see the FailureReason field in * the response to a DescribeTrainingJobResponse call.

  • *

    Stopping - The training job is stopping.

  • * Stopped - The training job has stopped.

For more * detailed information, see SecondaryStatus.

*/ inline DescribeTrainingJobResult& WithTrainingJobStatus(const TrainingJobStatus& value) { SetTrainingJobStatus(value); return *this;} /** *

The status of the training job.

SageMaker provides the following * training job statuses:

  • InProgress - The training * is in progress.

  • Completed - The training job has * completed.

  • Failed - The training job has failed. * To see the reason for the failure, see the FailureReason field in * the response to a DescribeTrainingJobResponse call.

  • *

    Stopping - The training job is stopping.

  • * Stopped - The training job has stopped.

For more * detailed information, see SecondaryStatus.

*/ inline DescribeTrainingJobResult& WithTrainingJobStatus(TrainingJobStatus&& value) { SetTrainingJobStatus(std::move(value)); return *this;} /** *

Provides detailed information about the state of the training job. For * detailed information on the secondary status of the training job, see * StatusMessage under SecondaryStatusTransition.

*

SageMaker provides primary statuses and secondary statuses that apply to each * of them:

InProgress
  • Starting - * Starting the training job.

  • Downloading - An * optional stage for algorithms that support File training input * mode. It indicates that data is being downloaded to the ML storage volumes.

    *
  • Training - Training is in progress.

  • *

    Interrupted - The job stopped because the managed spot training * instances were interrupted.

  • Uploading - * Training is complete and the model artifacts are being uploaded to the S3 * location.

Completed
  • * Completed - The training job has completed.

*
Failed
  • Failed - The training job has * failed. The reason for the failure is returned in the FailureReason * field of DescribeTrainingJobResponse.

*
Stopped
  • MaxRuntimeExceeded - The job * stopped because it exceeded the maximum allowed runtime.

  • * MaxWaitTimeExceeded - The job stopped because it exceeded the * maximum allowed wait time.

  • Stopped - The * training job has stopped.

Stopping
  • *

    Stopping - Stopping the training job.

*

Valid values for SecondaryStatus are subject * to change.

We no longer support the following secondary * statuses:

  • LaunchingMLInstances

  • *

    PreparingTraining

  • * DownloadingTrainingImage

*/ inline const SecondaryStatus& GetSecondaryStatus() const{ return m_secondaryStatus; } /** *

Provides detailed information about the state of the training job. For * detailed information on the secondary status of the training job, see * StatusMessage under SecondaryStatusTransition.

*

SageMaker provides primary statuses and secondary statuses that apply to each * of them:

InProgress
  • Starting - * Starting the training job.

  • Downloading - An * optional stage for algorithms that support File training input * mode. It indicates that data is being downloaded to the ML storage volumes.

    *
  • Training - Training is in progress.

  • *

    Interrupted - The job stopped because the managed spot training * instances were interrupted.

  • Uploading - * Training is complete and the model artifacts are being uploaded to the S3 * location.

Completed
  • * Completed - The training job has completed.

*
Failed
  • Failed - The training job has * failed. The reason for the failure is returned in the FailureReason * field of DescribeTrainingJobResponse.

*
Stopped
  • MaxRuntimeExceeded - The job * stopped because it exceeded the maximum allowed runtime.

  • * MaxWaitTimeExceeded - The job stopped because it exceeded the * maximum allowed wait time.

  • Stopped - The * training job has stopped.

Stopping
  • *

    Stopping - Stopping the training job.

*

Valid values for SecondaryStatus are subject * to change.

We no longer support the following secondary * statuses:

  • LaunchingMLInstances

  • *

    PreparingTraining

  • * DownloadingTrainingImage

*/ inline void SetSecondaryStatus(const SecondaryStatus& value) { m_secondaryStatus = value; } /** *

Provides detailed information about the state of the training job. For * detailed information on the secondary status of the training job, see * StatusMessage under SecondaryStatusTransition.

*

SageMaker provides primary statuses and secondary statuses that apply to each * of them:

InProgress
  • Starting - * Starting the training job.

  • Downloading - An * optional stage for algorithms that support File training input * mode. It indicates that data is being downloaded to the ML storage volumes.

    *
  • Training - Training is in progress.

  • *

    Interrupted - The job stopped because the managed spot training * instances were interrupted.

  • Uploading - * Training is complete and the model artifacts are being uploaded to the S3 * location.

Completed
  • * Completed - The training job has completed.

*
Failed
  • Failed - The training job has * failed. The reason for the failure is returned in the FailureReason * field of DescribeTrainingJobResponse.

*
Stopped
  • MaxRuntimeExceeded - The job * stopped because it exceeded the maximum allowed runtime.

  • * MaxWaitTimeExceeded - The job stopped because it exceeded the * maximum allowed wait time.

  • Stopped - The * training job has stopped.

Stopping
  • *

    Stopping - Stopping the training job.

*

Valid values for SecondaryStatus are subject * to change.

We no longer support the following secondary * statuses:

  • LaunchingMLInstances

  • *

    PreparingTraining

  • * DownloadingTrainingImage

*/ inline void SetSecondaryStatus(SecondaryStatus&& value) { m_secondaryStatus = std::move(value); } /** *

Provides detailed information about the state of the training job. For * detailed information on the secondary status of the training job, see * StatusMessage under SecondaryStatusTransition.

*

SageMaker provides primary statuses and secondary statuses that apply to each * of them:

InProgress
  • Starting - * Starting the training job.

  • Downloading - An * optional stage for algorithms that support File training input * mode. It indicates that data is being downloaded to the ML storage volumes.

    *
  • Training - Training is in progress.

  • *

    Interrupted - The job stopped because the managed spot training * instances were interrupted.

  • Uploading - * Training is complete and the model artifacts are being uploaded to the S3 * location.

Completed
  • * Completed - The training job has completed.

*
Failed
  • Failed - The training job has * failed. The reason for the failure is returned in the FailureReason * field of DescribeTrainingJobResponse.

*
Stopped
  • MaxRuntimeExceeded - The job * stopped because it exceeded the maximum allowed runtime.

  • * MaxWaitTimeExceeded - The job stopped because it exceeded the * maximum allowed wait time.

  • Stopped - The * training job has stopped.

Stopping
  • *

    Stopping - Stopping the training job.

*

Valid values for SecondaryStatus are subject * to change.

We no longer support the following secondary * statuses:

  • LaunchingMLInstances

  • *

    PreparingTraining

  • * DownloadingTrainingImage

*/ inline DescribeTrainingJobResult& WithSecondaryStatus(const SecondaryStatus& value) { SetSecondaryStatus(value); return *this;} /** *

Provides detailed information about the state of the training job. For * detailed information on the secondary status of the training job, see * StatusMessage under SecondaryStatusTransition.

*

SageMaker provides primary statuses and secondary statuses that apply to each * of them:

InProgress
  • Starting - * Starting the training job.

  • Downloading - An * optional stage for algorithms that support File training input * mode. It indicates that data is being downloaded to the ML storage volumes.

    *
  • Training - Training is in progress.

  • *

    Interrupted - The job stopped because the managed spot training * instances were interrupted.

  • Uploading - * Training is complete and the model artifacts are being uploaded to the S3 * location.

Completed
  • * Completed - The training job has completed.

*
Failed
  • Failed - The training job has * failed. The reason for the failure is returned in the FailureReason * field of DescribeTrainingJobResponse.

*
Stopped
  • MaxRuntimeExceeded - The job * stopped because it exceeded the maximum allowed runtime.

  • * MaxWaitTimeExceeded - The job stopped because it exceeded the * maximum allowed wait time.

  • Stopped - The * training job has stopped.

Stopping
  • *

    Stopping - Stopping the training job.

*

Valid values for SecondaryStatus are subject * to change.

We no longer support the following secondary * statuses:

  • LaunchingMLInstances

  • *

    PreparingTraining

  • * DownloadingTrainingImage

*/ inline DescribeTrainingJobResult& WithSecondaryStatus(SecondaryStatus&& value) { SetSecondaryStatus(std::move(value)); return *this;} /** *

If the training job failed, the reason it failed.

*/ inline const Aws::String& GetFailureReason() const{ return m_failureReason; } /** *

If the training job failed, the reason it failed.

*/ inline void SetFailureReason(const Aws::String& value) { m_failureReason = value; } /** *

If the training job failed, the reason it failed.

*/ inline void SetFailureReason(Aws::String&& value) { m_failureReason = std::move(value); } /** *

If the training job failed, the reason it failed.

*/ inline void SetFailureReason(const char* value) { m_failureReason.assign(value); } /** *

If the training job failed, the reason it failed.

*/ inline DescribeTrainingJobResult& WithFailureReason(const Aws::String& value) { SetFailureReason(value); return *this;} /** *

If the training job failed, the reason it failed.

*/ inline DescribeTrainingJobResult& WithFailureReason(Aws::String&& value) { SetFailureReason(std::move(value)); return *this;} /** *

If the training job failed, the reason it failed.

*/ inline DescribeTrainingJobResult& WithFailureReason(const char* value) { SetFailureReason(value); return *this;} /** *

Algorithm-specific parameters.

*/ inline const Aws::Map& GetHyperParameters() const{ return m_hyperParameters; } /** *

Algorithm-specific parameters.

*/ inline void SetHyperParameters(const Aws::Map& value) { m_hyperParameters = value; } /** *

Algorithm-specific parameters.

*/ inline void SetHyperParameters(Aws::Map&& value) { m_hyperParameters = std::move(value); } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& WithHyperParameters(const Aws::Map& value) { SetHyperParameters(value); return *this;} /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& WithHyperParameters(Aws::Map&& value) { SetHyperParameters(std::move(value)); return *this;} /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(const Aws::String& key, const Aws::String& value) { m_hyperParameters.emplace(key, value); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(Aws::String&& key, const Aws::String& value) { m_hyperParameters.emplace(std::move(key), value); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(const Aws::String& key, Aws::String&& value) { m_hyperParameters.emplace(key, std::move(value)); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(Aws::String&& key, Aws::String&& value) { m_hyperParameters.emplace(std::move(key), std::move(value)); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(const char* key, Aws::String&& value) { m_hyperParameters.emplace(key, std::move(value)); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(Aws::String&& key, const char* value) { m_hyperParameters.emplace(std::move(key), value); return *this; } /** *

Algorithm-specific parameters.

*/ inline DescribeTrainingJobResult& AddHyperParameters(const char* key, const char* value) { m_hyperParameters.emplace(key, value); return *this; } /** *

Information about the algorithm used for training, and algorithm metadata. *

*/ inline const AlgorithmSpecification& GetAlgorithmSpecification() const{ return m_algorithmSpecification; } /** *

Information about the algorithm used for training, and algorithm metadata. *

*/ inline void SetAlgorithmSpecification(const AlgorithmSpecification& value) { m_algorithmSpecification = value; } /** *

Information about the algorithm used for training, and algorithm metadata. *

*/ inline void SetAlgorithmSpecification(AlgorithmSpecification&& value) { m_algorithmSpecification = std::move(value); } /** *

Information about the algorithm used for training, and algorithm metadata. *

*/ inline DescribeTrainingJobResult& WithAlgorithmSpecification(const AlgorithmSpecification& value) { SetAlgorithmSpecification(value); return *this;} /** *

Information about the algorithm used for training, and algorithm metadata. *

*/ inline DescribeTrainingJobResult& WithAlgorithmSpecification(AlgorithmSpecification&& value) { SetAlgorithmSpecification(std::move(value)); return *this;} /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline const Aws::String& GetRoleArn() const{ return m_roleArn; } /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline void SetRoleArn(const Aws::String& value) { m_roleArn = value; } /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline void SetRoleArn(Aws::String&& value) { m_roleArn = std::move(value); } /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline void SetRoleArn(const char* value) { m_roleArn.assign(value); } /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline DescribeTrainingJobResult& WithRoleArn(const Aws::String& value) { SetRoleArn(value); return *this;} /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline DescribeTrainingJobResult& WithRoleArn(Aws::String&& value) { SetRoleArn(std::move(value)); return *this;} /** *

The Amazon Web Services Identity and Access Management (IAM) role configured * for the training job.

*/ inline DescribeTrainingJobResult& WithRoleArn(const char* value) { SetRoleArn(value); return *this;} /** *

An array of Channel objects that describes each data input * channel.

*/ inline const Aws::Vector& GetInputDataConfig() const{ return m_inputDataConfig; } /** *

An array of Channel objects that describes each data input * channel.

*/ inline void SetInputDataConfig(const Aws::Vector& value) { m_inputDataConfig = value; } /** *

An array of Channel objects that describes each data input * channel.

*/ inline void SetInputDataConfig(Aws::Vector&& value) { m_inputDataConfig = std::move(value); } /** *

An array of Channel objects that describes each data input * channel.

*/ inline DescribeTrainingJobResult& WithInputDataConfig(const Aws::Vector& value) { SetInputDataConfig(value); return *this;} /** *

An array of Channel objects that describes each data input * channel.

*/ inline DescribeTrainingJobResult& WithInputDataConfig(Aws::Vector&& value) { SetInputDataConfig(std::move(value)); return *this;} /** *

An array of Channel objects that describes each data input * channel.

*/ inline DescribeTrainingJobResult& AddInputDataConfig(const Channel& value) { m_inputDataConfig.push_back(value); return *this; } /** *

An array of Channel objects that describes each data input * channel.

*/ inline DescribeTrainingJobResult& AddInputDataConfig(Channel&& value) { m_inputDataConfig.push_back(std::move(value)); return *this; } /** *

The S3 path where model artifacts that you configured when creating the job * are stored. SageMaker creates subfolders for model artifacts.

*/ inline const OutputDataConfig& GetOutputDataConfig() const{ return m_outputDataConfig; } /** *

The S3 path where model artifacts that you configured when creating the job * are stored. SageMaker creates subfolders for model artifacts.

*/ inline void SetOutputDataConfig(const OutputDataConfig& value) { m_outputDataConfig = value; } /** *

The S3 path where model artifacts that you configured when creating the job * are stored. SageMaker creates subfolders for model artifacts.

*/ inline void SetOutputDataConfig(OutputDataConfig&& value) { m_outputDataConfig = std::move(value); } /** *

The S3 path where model artifacts that you configured when creating the job * are stored. SageMaker creates subfolders for model artifacts.

*/ inline DescribeTrainingJobResult& WithOutputDataConfig(const OutputDataConfig& value) { SetOutputDataConfig(value); return *this;} /** *

The S3 path where model artifacts that you configured when creating the job * are stored. SageMaker creates subfolders for model artifacts.

*/ inline DescribeTrainingJobResult& WithOutputDataConfig(OutputDataConfig&& value) { SetOutputDataConfig(std::move(value)); return *this;} /** *

Resources, including ML compute instances and ML storage volumes, that are * configured for model training.

*/ inline const ResourceConfig& GetResourceConfig() const{ return m_resourceConfig; } /** *

Resources, including ML compute instances and ML storage volumes, that are * configured for model training.

*/ inline void SetResourceConfig(const ResourceConfig& value) { m_resourceConfig = value; } /** *

Resources, including ML compute instances and ML storage volumes, that are * configured for model training.

*/ inline void SetResourceConfig(ResourceConfig&& value) { m_resourceConfig = std::move(value); } /** *

Resources, including ML compute instances and ML storage volumes, that are * configured for model training.

*/ inline DescribeTrainingJobResult& WithResourceConfig(const ResourceConfig& value) { SetResourceConfig(value); return *this;} /** *

Resources, including ML compute instances and ML storage volumes, that are * configured for model training.

*/ inline DescribeTrainingJobResult& WithResourceConfig(ResourceConfig&& value) { SetResourceConfig(std::move(value)); return *this;} /** *

A VpcConfig * object that specifies the VPC that this training job has access to. For more * information, see Protect * Training Jobs by Using an Amazon Virtual Private Cloud.

*/ inline const VpcConfig& GetVpcConfig() const{ return m_vpcConfig; } /** *

A VpcConfig * object that specifies the VPC that this training job has access to. For more * information, see Protect * Training Jobs by Using an Amazon Virtual Private Cloud.

*/ inline void SetVpcConfig(const VpcConfig& value) { m_vpcConfig = value; } /** *

A VpcConfig * object that specifies the VPC that this training job has access to. For more * information, see Protect * Training Jobs by Using an Amazon Virtual Private Cloud.

*/ inline void SetVpcConfig(VpcConfig&& value) { m_vpcConfig = std::move(value); } /** *

A VpcConfig * object that specifies the VPC that this training job has access to. For more * information, see Protect * Training Jobs by Using an Amazon Virtual Private Cloud.

*/ inline DescribeTrainingJobResult& WithVpcConfig(const VpcConfig& value) { SetVpcConfig(value); return *this;} /** *

A VpcConfig * object that specifies the VPC that this training job has access to. For more * information, see Protect * Training Jobs by Using an Amazon Virtual Private Cloud.

*/ inline DescribeTrainingJobResult& WithVpcConfig(VpcConfig&& value) { SetVpcConfig(std::move(value)); return *this;} /** *

Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.

To stop a job, SageMaker sends the algorithm the * SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts, so the * results of training are not lost.

*/ inline const StoppingCondition& GetStoppingCondition() const{ return m_stoppingCondition; } /** *

Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.

To stop a job, SageMaker sends the algorithm the * SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts, so the * results of training are not lost.

*/ inline void SetStoppingCondition(const StoppingCondition& value) { m_stoppingCondition = value; } /** *

Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.

To stop a job, SageMaker sends the algorithm the * SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts, so the * results of training are not lost.

*/ inline void SetStoppingCondition(StoppingCondition&& value) { m_stoppingCondition = std::move(value); } /** *

Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.

To stop a job, SageMaker sends the algorithm the * SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts, so the * results of training are not lost.

*/ inline DescribeTrainingJobResult& WithStoppingCondition(const StoppingCondition& value) { SetStoppingCondition(value); return *this;} /** *

Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.

To stop a job, SageMaker sends the algorithm the * SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts, so the * results of training are not lost.

*/ inline DescribeTrainingJobResult& WithStoppingCondition(StoppingCondition&& value) { SetStoppingCondition(std::move(value)); return *this;} /** *

A timestamp that indicates when the training job was created.

*/ inline const Aws::Utils::DateTime& GetCreationTime() const{ return m_creationTime; } /** *

A timestamp that indicates when the training job was created.

*/ inline void SetCreationTime(const Aws::Utils::DateTime& value) { m_creationTime = value; } /** *

A timestamp that indicates when the training job was created.

*/ inline void SetCreationTime(Aws::Utils::DateTime&& value) { m_creationTime = std::move(value); } /** *

A timestamp that indicates when the training job was created.

*/ inline DescribeTrainingJobResult& WithCreationTime(const Aws::Utils::DateTime& value) { SetCreationTime(value); return *this;} /** *

A timestamp that indicates when the training job was created.

*/ inline DescribeTrainingJobResult& WithCreationTime(Aws::Utils::DateTime&& value) { SetCreationTime(std::move(value)); return *this;} /** *

Indicates the time when the training job starts on training instances. You * are billed for the time interval between this time and the value of * TrainingEndTime. The start time in CloudWatch Logs might be later * than this time. The difference is due to the time it takes to download the * training data and to the size of the training container.

*/ inline const Aws::Utils::DateTime& GetTrainingStartTime() const{ return m_trainingStartTime; } /** *

Indicates the time when the training job starts on training instances. You * are billed for the time interval between this time and the value of * TrainingEndTime. The start time in CloudWatch Logs might be later * than this time. The difference is due to the time it takes to download the * training data and to the size of the training container.

*/ inline void SetTrainingStartTime(const Aws::Utils::DateTime& value) { m_trainingStartTime = value; } /** *

Indicates the time when the training job starts on training instances. You * are billed for the time interval between this time and the value of * TrainingEndTime. The start time in CloudWatch Logs might be later * than this time. The difference is due to the time it takes to download the * training data and to the size of the training container.

*/ inline void SetTrainingStartTime(Aws::Utils::DateTime&& value) { m_trainingStartTime = std::move(value); } /** *

Indicates the time when the training job starts on training instances. You * are billed for the time interval between this time and the value of * TrainingEndTime. The start time in CloudWatch Logs might be later * than this time. The difference is due to the time it takes to download the * training data and to the size of the training container.

*/ inline DescribeTrainingJobResult& WithTrainingStartTime(const Aws::Utils::DateTime& value) { SetTrainingStartTime(value); return *this;} /** *

Indicates the time when the training job starts on training instances. You * are billed for the time interval between this time and the value of * TrainingEndTime. The start time in CloudWatch Logs might be later * than this time. The difference is due to the time it takes to download the * training data and to the size of the training container.

*/ inline DescribeTrainingJobResult& WithTrainingStartTime(Aws::Utils::DateTime&& value) { SetTrainingStartTime(std::move(value)); return *this;} /** *

Indicates the time when the training job ends on training instances. You are * billed for the time interval between the value of TrainingStartTime * and this time. For successful jobs and stopped jobs, this is the time after * model artifacts are uploaded. For failed jobs, this is the time when SageMaker * detects a job failure.

*/ inline const Aws::Utils::DateTime& GetTrainingEndTime() const{ return m_trainingEndTime; } /** *

Indicates the time when the training job ends on training instances. You are * billed for the time interval between the value of TrainingStartTime * and this time. For successful jobs and stopped jobs, this is the time after * model artifacts are uploaded. For failed jobs, this is the time when SageMaker * detects a job failure.

*/ inline void SetTrainingEndTime(const Aws::Utils::DateTime& value) { m_trainingEndTime = value; } /** *

Indicates the time when the training job ends on training instances. You are * billed for the time interval between the value of TrainingStartTime * and this time. For successful jobs and stopped jobs, this is the time after * model artifacts are uploaded. For failed jobs, this is the time when SageMaker * detects a job failure.

*/ inline void SetTrainingEndTime(Aws::Utils::DateTime&& value) { m_trainingEndTime = std::move(value); } /** *

Indicates the time when the training job ends on training instances. You are * billed for the time interval between the value of TrainingStartTime * and this time. For successful jobs and stopped jobs, this is the time after * model artifacts are uploaded. For failed jobs, this is the time when SageMaker * detects a job failure.

*/ inline DescribeTrainingJobResult& WithTrainingEndTime(const Aws::Utils::DateTime& value) { SetTrainingEndTime(value); return *this;} /** *

Indicates the time when the training job ends on training instances. You are * billed for the time interval between the value of TrainingStartTime * and this time. For successful jobs and stopped jobs, this is the time after * model artifacts are uploaded. For failed jobs, this is the time when SageMaker * detects a job failure.

*/ inline DescribeTrainingJobResult& WithTrainingEndTime(Aws::Utils::DateTime&& value) { SetTrainingEndTime(std::move(value)); return *this;} /** *

A timestamp that indicates when the status of the training job was last * modified.

*/ inline const Aws::Utils::DateTime& GetLastModifiedTime() const{ return m_lastModifiedTime; } /** *

A timestamp that indicates when the status of the training job was last * modified.

*/ inline void SetLastModifiedTime(const Aws::Utils::DateTime& value) { m_lastModifiedTime = value; } /** *

A timestamp that indicates when the status of the training job was last * modified.

*/ inline void SetLastModifiedTime(Aws::Utils::DateTime&& value) { m_lastModifiedTime = std::move(value); } /** *

A timestamp that indicates when the status of the training job was last * modified.

*/ inline DescribeTrainingJobResult& WithLastModifiedTime(const Aws::Utils::DateTime& value) { SetLastModifiedTime(value); return *this;} /** *

A timestamp that indicates when the status of the training job was last * modified.

*/ inline DescribeTrainingJobResult& WithLastModifiedTime(Aws::Utils::DateTime&& value) { SetLastModifiedTime(std::move(value)); return *this;} /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline const Aws::Vector& GetSecondaryStatusTransitions() const{ return m_secondaryStatusTransitions; } /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline void SetSecondaryStatusTransitions(const Aws::Vector& value) { m_secondaryStatusTransitions = value; } /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline void SetSecondaryStatusTransitions(Aws::Vector&& value) { m_secondaryStatusTransitions = std::move(value); } /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline DescribeTrainingJobResult& WithSecondaryStatusTransitions(const Aws::Vector& value) { SetSecondaryStatusTransitions(value); return *this;} /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline DescribeTrainingJobResult& WithSecondaryStatusTransitions(Aws::Vector&& value) { SetSecondaryStatusTransitions(std::move(value)); return *this;} /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline DescribeTrainingJobResult& AddSecondaryStatusTransitions(const SecondaryStatusTransition& value) { m_secondaryStatusTransitions.push_back(value); return *this; } /** *

A history of all of the secondary statuses that the training job has * transitioned through.

*/ inline DescribeTrainingJobResult& AddSecondaryStatusTransitions(SecondaryStatusTransition&& value) { m_secondaryStatusTransitions.push_back(std::move(value)); return *this; } /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline const Aws::Vector& GetFinalMetricDataList() const{ return m_finalMetricDataList; } /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline void SetFinalMetricDataList(const Aws::Vector& value) { m_finalMetricDataList = value; } /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline void SetFinalMetricDataList(Aws::Vector&& value) { m_finalMetricDataList = std::move(value); } /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline DescribeTrainingJobResult& WithFinalMetricDataList(const Aws::Vector& value) { SetFinalMetricDataList(value); return *this;} /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline DescribeTrainingJobResult& WithFinalMetricDataList(Aws::Vector&& value) { SetFinalMetricDataList(std::move(value)); return *this;} /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline DescribeTrainingJobResult& AddFinalMetricDataList(const MetricData& value) { m_finalMetricDataList.push_back(value); return *this; } /** *

A collection of MetricData objects that specify the names, * values, and dates and times that the training algorithm emitted to Amazon * CloudWatch.

*/ inline DescribeTrainingJobResult& AddFinalMetricDataList(MetricData&& value) { m_finalMetricDataList.push_back(std::move(value)); return *this; } /** *

If you want to allow inbound or outbound network calls, except for calls * between peers within a training cluster for distributed training, choose * True. If you enable network isolation for training jobs that are * configured to use a VPC, SageMaker downloads and uploads customer data and model * artifacts through the specified VPC, but the training container does not have * network access.

*/ inline bool GetEnableNetworkIsolation() const{ return m_enableNetworkIsolation; } /** *

If you want to allow inbound or outbound network calls, except for calls * between peers within a training cluster for distributed training, choose * True. If you enable network isolation for training jobs that are * configured to use a VPC, SageMaker downloads and uploads customer data and model * artifacts through the specified VPC, but the training container does not have * network access.

*/ inline void SetEnableNetworkIsolation(bool value) { m_enableNetworkIsolation = value; } /** *

If you want to allow inbound or outbound network calls, except for calls * between peers within a training cluster for distributed training, choose * True. If you enable network isolation for training jobs that are * configured to use a VPC, SageMaker downloads and uploads customer data and model * artifacts through the specified VPC, but the training container does not have * network access.

*/ inline DescribeTrainingJobResult& WithEnableNetworkIsolation(bool value) { SetEnableNetworkIsolation(value); return *this;} /** *

To encrypt all communications between ML compute instances in distributed * training, choose True. Encryption provides greater security for * distributed training, but training might take longer. How long it takes depends * on the amount of communication between compute instances, especially if you use * a deep learning algorithms in distributed training.

*/ inline bool GetEnableInterContainerTrafficEncryption() const{ return m_enableInterContainerTrafficEncryption; } /** *

To encrypt all communications between ML compute instances in distributed * training, choose True. Encryption provides greater security for * distributed training, but training might take longer. How long it takes depends * on the amount of communication between compute instances, especially if you use * a deep learning algorithms in distributed training.

*/ inline void SetEnableInterContainerTrafficEncryption(bool value) { m_enableInterContainerTrafficEncryption = value; } /** *

To encrypt all communications between ML compute instances in distributed * training, choose True. Encryption provides greater security for * distributed training, but training might take longer. How long it takes depends * on the amount of communication between compute instances, especially if you use * a deep learning algorithms in distributed training.

*/ inline DescribeTrainingJobResult& WithEnableInterContainerTrafficEncryption(bool value) { SetEnableInterContainerTrafficEncryption(value); return *this;} /** *

A Boolean indicating whether managed spot training is enabled * (True) or not (False).

*/ inline bool GetEnableManagedSpotTraining() const{ return m_enableManagedSpotTraining; } /** *

A Boolean indicating whether managed spot training is enabled * (True) or not (False).

*/ inline void SetEnableManagedSpotTraining(bool value) { m_enableManagedSpotTraining = value; } /** *

A Boolean indicating whether managed spot training is enabled * (True) or not (False).

*/ inline DescribeTrainingJobResult& WithEnableManagedSpotTraining(bool value) { SetEnableManagedSpotTraining(value); return *this;} inline const CheckpointConfig& GetCheckpointConfig() const{ return m_checkpointConfig; } inline void SetCheckpointConfig(const CheckpointConfig& value) { m_checkpointConfig = value; } inline void SetCheckpointConfig(CheckpointConfig&& value) { m_checkpointConfig = std::move(value); } inline DescribeTrainingJobResult& WithCheckpointConfig(const CheckpointConfig& value) { SetCheckpointConfig(value); return *this;} inline DescribeTrainingJobResult& WithCheckpointConfig(CheckpointConfig&& value) { SetCheckpointConfig(std::move(value)); return *this;} /** *

The training time in seconds.

*/ inline int GetTrainingTimeInSeconds() const{ return m_trainingTimeInSeconds; } /** *

The training time in seconds.

*/ inline void SetTrainingTimeInSeconds(int value) { m_trainingTimeInSeconds = value; } /** *

The training time in seconds.

*/ inline DescribeTrainingJobResult& WithTrainingTimeInSeconds(int value) { SetTrainingTimeInSeconds(value); return *this;} /** *

The billable time in seconds. Billable time refers to the absolute wall-clock * time.

Multiply BillableTimeInSeconds by the number of * instances (InstanceCount) in your training cluster to get the total * compute time SageMaker bills you if you run distributed training. The formula is * as follows: BillableTimeInSeconds * InstanceCount .

You can * calculate the savings from using managed spot training using the formula * (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For * example, if BillableTimeInSeconds is 100 and * TrainingTimeInSeconds is 500, the savings is 80%.

*/ inline int GetBillableTimeInSeconds() const{ return m_billableTimeInSeconds; } /** *

The billable time in seconds. Billable time refers to the absolute wall-clock * time.

Multiply BillableTimeInSeconds by the number of * instances (InstanceCount) in your training cluster to get the total * compute time SageMaker bills you if you run distributed training. The formula is * as follows: BillableTimeInSeconds * InstanceCount .

You can * calculate the savings from using managed spot training using the formula * (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For * example, if BillableTimeInSeconds is 100 and * TrainingTimeInSeconds is 500, the savings is 80%.

*/ inline void SetBillableTimeInSeconds(int value) { m_billableTimeInSeconds = value; } /** *

The billable time in seconds. Billable time refers to the absolute wall-clock * time.

Multiply BillableTimeInSeconds by the number of * instances (InstanceCount) in your training cluster to get the total * compute time SageMaker bills you if you run distributed training. The formula is * as follows: BillableTimeInSeconds * InstanceCount .

You can * calculate the savings from using managed spot training using the formula * (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For * example, if BillableTimeInSeconds is 100 and * TrainingTimeInSeconds is 500, the savings is 80%.

*/ inline DescribeTrainingJobResult& WithBillableTimeInSeconds(int value) { SetBillableTimeInSeconds(value); return *this;} inline const DebugHookConfig& GetDebugHookConfig() const{ return m_debugHookConfig; } inline void SetDebugHookConfig(const DebugHookConfig& value) { m_debugHookConfig = value; } inline void SetDebugHookConfig(DebugHookConfig&& value) { m_debugHookConfig = std::move(value); } inline DescribeTrainingJobResult& WithDebugHookConfig(const DebugHookConfig& value) { SetDebugHookConfig(value); return *this;} inline DescribeTrainingJobResult& WithDebugHookConfig(DebugHookConfig&& value) { SetDebugHookConfig(std::move(value)); return *this;} inline const ExperimentConfig& GetExperimentConfig() const{ return m_experimentConfig; } inline void SetExperimentConfig(const ExperimentConfig& value) { m_experimentConfig = value; } inline void SetExperimentConfig(ExperimentConfig&& value) { m_experimentConfig = std::move(value); } inline DescribeTrainingJobResult& WithExperimentConfig(const ExperimentConfig& value) { SetExperimentConfig(value); return *this;} inline DescribeTrainingJobResult& WithExperimentConfig(ExperimentConfig&& value) { SetExperimentConfig(std::move(value)); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline const Aws::Vector& GetDebugRuleConfigurations() const{ return m_debugRuleConfigurations; } /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline void SetDebugRuleConfigurations(const Aws::Vector& value) { m_debugRuleConfigurations = value; } /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline void SetDebugRuleConfigurations(Aws::Vector&& value) { m_debugRuleConfigurations = std::move(value); } /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline DescribeTrainingJobResult& WithDebugRuleConfigurations(const Aws::Vector& value) { SetDebugRuleConfigurations(value); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline DescribeTrainingJobResult& WithDebugRuleConfigurations(Aws::Vector&& value) { SetDebugRuleConfigurations(std::move(value)); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline DescribeTrainingJobResult& AddDebugRuleConfigurations(const DebugRuleConfiguration& value) { m_debugRuleConfigurations.push_back(value); return *this; } /** *

Configuration information for Amazon SageMaker Debugger rules for debugging * output tensors.

*/ inline DescribeTrainingJobResult& AddDebugRuleConfigurations(DebugRuleConfiguration&& value) { m_debugRuleConfigurations.push_back(std::move(value)); return *this; } inline const TensorBoardOutputConfig& GetTensorBoardOutputConfig() const{ return m_tensorBoardOutputConfig; } inline void SetTensorBoardOutputConfig(const TensorBoardOutputConfig& value) { m_tensorBoardOutputConfig = value; } inline void SetTensorBoardOutputConfig(TensorBoardOutputConfig&& value) { m_tensorBoardOutputConfig = std::move(value); } inline DescribeTrainingJobResult& WithTensorBoardOutputConfig(const TensorBoardOutputConfig& value) { SetTensorBoardOutputConfig(value); return *this;} inline DescribeTrainingJobResult& WithTensorBoardOutputConfig(TensorBoardOutputConfig&& value) { SetTensorBoardOutputConfig(std::move(value)); return *this;} /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline const Aws::Vector& GetDebugRuleEvaluationStatuses() const{ return m_debugRuleEvaluationStatuses; } /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline void SetDebugRuleEvaluationStatuses(const Aws::Vector& value) { m_debugRuleEvaluationStatuses = value; } /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline void SetDebugRuleEvaluationStatuses(Aws::Vector&& value) { m_debugRuleEvaluationStatuses = std::move(value); } /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline DescribeTrainingJobResult& WithDebugRuleEvaluationStatuses(const Aws::Vector& value) { SetDebugRuleEvaluationStatuses(value); return *this;} /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline DescribeTrainingJobResult& WithDebugRuleEvaluationStatuses(Aws::Vector&& value) { SetDebugRuleEvaluationStatuses(std::move(value)); return *this;} /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline DescribeTrainingJobResult& AddDebugRuleEvaluationStatuses(const DebugRuleEvaluationStatus& value) { m_debugRuleEvaluationStatuses.push_back(value); return *this; } /** *

Evaluation status of Amazon SageMaker Debugger rules for debugging on a * training job.

*/ inline DescribeTrainingJobResult& AddDebugRuleEvaluationStatuses(DebugRuleEvaluationStatus&& value) { m_debugRuleEvaluationStatuses.push_back(std::move(value)); return *this; } inline const ProfilerConfig& GetProfilerConfig() const{ return m_profilerConfig; } inline void SetProfilerConfig(const ProfilerConfig& value) { m_profilerConfig = value; } inline void SetProfilerConfig(ProfilerConfig&& value) { m_profilerConfig = std::move(value); } inline DescribeTrainingJobResult& WithProfilerConfig(const ProfilerConfig& value) { SetProfilerConfig(value); return *this;} inline DescribeTrainingJobResult& WithProfilerConfig(ProfilerConfig&& value) { SetProfilerConfig(std::move(value)); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline const Aws::Vector& GetProfilerRuleConfigurations() const{ return m_profilerRuleConfigurations; } /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline void SetProfilerRuleConfigurations(const Aws::Vector& value) { m_profilerRuleConfigurations = value; } /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline void SetProfilerRuleConfigurations(Aws::Vector&& value) { m_profilerRuleConfigurations = std::move(value); } /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline DescribeTrainingJobResult& WithProfilerRuleConfigurations(const Aws::Vector& value) { SetProfilerRuleConfigurations(value); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline DescribeTrainingJobResult& WithProfilerRuleConfigurations(Aws::Vector&& value) { SetProfilerRuleConfigurations(std::move(value)); return *this;} /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline DescribeTrainingJobResult& AddProfilerRuleConfigurations(const ProfilerRuleConfiguration& value) { m_profilerRuleConfigurations.push_back(value); return *this; } /** *

Configuration information for Amazon SageMaker Debugger rules for profiling * system and framework metrics.

*/ inline DescribeTrainingJobResult& AddProfilerRuleConfigurations(ProfilerRuleConfiguration&& value) { m_profilerRuleConfigurations.push_back(std::move(value)); return *this; } /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline const Aws::Vector& GetProfilerRuleEvaluationStatuses() const{ return m_profilerRuleEvaluationStatuses; } /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline void SetProfilerRuleEvaluationStatuses(const Aws::Vector& value) { m_profilerRuleEvaluationStatuses = value; } /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline void SetProfilerRuleEvaluationStatuses(Aws::Vector&& value) { m_profilerRuleEvaluationStatuses = std::move(value); } /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline DescribeTrainingJobResult& WithProfilerRuleEvaluationStatuses(const Aws::Vector& value) { SetProfilerRuleEvaluationStatuses(value); return *this;} /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline DescribeTrainingJobResult& WithProfilerRuleEvaluationStatuses(Aws::Vector&& value) { SetProfilerRuleEvaluationStatuses(std::move(value)); return *this;} /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline DescribeTrainingJobResult& AddProfilerRuleEvaluationStatuses(const ProfilerRuleEvaluationStatus& value) { m_profilerRuleEvaluationStatuses.push_back(value); return *this; } /** *

Evaluation status of Amazon SageMaker Debugger rules for profiling on a * training job.

*/ inline DescribeTrainingJobResult& AddProfilerRuleEvaluationStatuses(ProfilerRuleEvaluationStatus&& value) { m_profilerRuleEvaluationStatuses.push_back(std::move(value)); return *this; } /** *

Profiling status of a training job.

*/ inline const ProfilingStatus& GetProfilingStatus() const{ return m_profilingStatus; } /** *

Profiling status of a training job.

*/ inline void SetProfilingStatus(const ProfilingStatus& value) { m_profilingStatus = value; } /** *

Profiling status of a training job.

*/ inline void SetProfilingStatus(ProfilingStatus&& value) { m_profilingStatus = std::move(value); } /** *

Profiling status of a training job.

*/ inline DescribeTrainingJobResult& WithProfilingStatus(const ProfilingStatus& value) { SetProfilingStatus(value); return *this;} /** *

Profiling status of a training job.

*/ inline DescribeTrainingJobResult& WithProfilingStatus(ProfilingStatus&& value) { SetProfilingStatus(std::move(value)); return *this;} /** *

The number of times to retry the job when the job fails due to an * InternalServerError.

*/ inline const RetryStrategy& GetRetryStrategy() const{ return m_retryStrategy; } /** *

The number of times to retry the job when the job fails due to an * InternalServerError.

*/ inline void SetRetryStrategy(const RetryStrategy& value) { m_retryStrategy = value; } /** *

The number of times to retry the job when the job fails due to an * InternalServerError.

*/ inline void SetRetryStrategy(RetryStrategy&& value) { m_retryStrategy = std::move(value); } /** *

The number of times to retry the job when the job fails due to an * InternalServerError.

*/ inline DescribeTrainingJobResult& WithRetryStrategy(const RetryStrategy& value) { SetRetryStrategy(value); return *this;} /** *

The number of times to retry the job when the job fails due to an * InternalServerError.

*/ inline DescribeTrainingJobResult& WithRetryStrategy(RetryStrategy&& value) { SetRetryStrategy(std::move(value)); return *this;} /** *

The environment variables to set in the Docker container.

*/ inline const Aws::Map& GetEnvironment() const{ return m_environment; } /** *

The environment variables to set in the Docker container.

*/ inline void SetEnvironment(const Aws::Map& value) { m_environment = value; } /** *

The environment variables to set in the Docker container.

*/ inline void SetEnvironment(Aws::Map&& value) { m_environment = std::move(value); } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& WithEnvironment(const Aws::Map& value) { SetEnvironment(value); return *this;} /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& WithEnvironment(Aws::Map&& value) { SetEnvironment(std::move(value)); return *this;} /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(const Aws::String& key, const Aws::String& value) { m_environment.emplace(key, value); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(Aws::String&& key, const Aws::String& value) { m_environment.emplace(std::move(key), value); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(const Aws::String& key, Aws::String&& value) { m_environment.emplace(key, std::move(value)); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(Aws::String&& key, Aws::String&& value) { m_environment.emplace(std::move(key), std::move(value)); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(const char* key, Aws::String&& value) { m_environment.emplace(key, std::move(value)); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(Aws::String&& key, const char* value) { m_environment.emplace(std::move(key), value); return *this; } /** *

The environment variables to set in the Docker container.

*/ inline DescribeTrainingJobResult& AddEnvironment(const char* key, const char* value) { m_environment.emplace(key, value); return *this; } /** *

The status of the warm pool associated with the training job.

*/ inline const WarmPoolStatus& GetWarmPoolStatus() const{ return m_warmPoolStatus; } /** *

The status of the warm pool associated with the training job.

*/ inline void SetWarmPoolStatus(const WarmPoolStatus& value) { m_warmPoolStatus = value; } /** *

The status of the warm pool associated with the training job.

*/ inline void SetWarmPoolStatus(WarmPoolStatus&& value) { m_warmPoolStatus = std::move(value); } /** *

The status of the warm pool associated with the training job.

*/ inline DescribeTrainingJobResult& WithWarmPoolStatus(const WarmPoolStatus& value) { SetWarmPoolStatus(value); return *this;} /** *

The status of the warm pool associated with the training job.

*/ inline DescribeTrainingJobResult& WithWarmPoolStatus(WarmPoolStatus&& value) { SetWarmPoolStatus(std::move(value)); return *this;} inline const Aws::String& GetRequestId() const{ return m_requestId; } inline void SetRequestId(const Aws::String& value) { m_requestId = value; } inline void SetRequestId(Aws::String&& value) { m_requestId = std::move(value); } inline void SetRequestId(const char* value) { m_requestId.assign(value); } inline DescribeTrainingJobResult& WithRequestId(const Aws::String& value) { SetRequestId(value); return *this;} inline DescribeTrainingJobResult& WithRequestId(Aws::String&& value) { SetRequestId(std::move(value)); return *this;} inline DescribeTrainingJobResult& WithRequestId(const char* value) { SetRequestId(value); return *this;} private: Aws::String m_trainingJobName; Aws::String m_trainingJobArn; Aws::String m_tuningJobArn; Aws::String m_labelingJobArn; Aws::String m_autoMLJobArn; ModelArtifacts m_modelArtifacts; TrainingJobStatus m_trainingJobStatus; SecondaryStatus m_secondaryStatus; Aws::String m_failureReason; Aws::Map m_hyperParameters; AlgorithmSpecification m_algorithmSpecification; Aws::String m_roleArn; Aws::Vector m_inputDataConfig; OutputDataConfig m_outputDataConfig; ResourceConfig m_resourceConfig; VpcConfig m_vpcConfig; StoppingCondition m_stoppingCondition; Aws::Utils::DateTime m_creationTime; Aws::Utils::DateTime m_trainingStartTime; Aws::Utils::DateTime m_trainingEndTime; Aws::Utils::DateTime m_lastModifiedTime; Aws::Vector m_secondaryStatusTransitions; Aws::Vector m_finalMetricDataList; bool m_enableNetworkIsolation; bool m_enableInterContainerTrafficEncryption; bool m_enableManagedSpotTraining; CheckpointConfig m_checkpointConfig; int m_trainingTimeInSeconds; int m_billableTimeInSeconds; DebugHookConfig m_debugHookConfig; ExperimentConfig m_experimentConfig; Aws::Vector m_debugRuleConfigurations; TensorBoardOutputConfig m_tensorBoardOutputConfig; Aws::Vector m_debugRuleEvaluationStatuses; ProfilerConfig m_profilerConfig; Aws::Vector m_profilerRuleConfigurations; Aws::Vector m_profilerRuleEvaluationStatuses; ProfilingStatus m_profilingStatus; RetryStrategy m_retryStrategy; Aws::Map m_environment; WarmPoolStatus m_warmPoolStatus; Aws::String m_requestId; }; } // namespace Model } // namespace SageMaker } // namespace Aws