/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Specifies which training algorithm to use for training jobs that a
* hyperparameter tuning job launches and the metrics to monitor.See
* Also:
AWS
* API Reference
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The registry path of the Docker image that contains the training algorithm.
* For information about Docker registry paths for built-in algorithms, see Algorithms
* Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
* registry/repository[:tag]
and
* registry/repository[@digest]
image path formats. For more
* information, see Using
* Your Own Algorithms with Amazon SageMaker.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
The name of the resource algorithm to use for the hyperparameter tuning job.
* If you specify a value for this parameter, do not specify a value for
* TrainingImage
.
An array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline const Aws::VectorAn array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline bool MetricDefinitionsHasBeenSet() const { return m_metricDefinitionsHasBeenSet; } /** *An array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline void SetMetricDefinitions(const Aws::VectorAn array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline void SetMetricDefinitions(Aws::VectorAn array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline HyperParameterAlgorithmSpecification& WithMetricDefinitions(const Aws::VectorAn array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline HyperParameterAlgorithmSpecification& WithMetricDefinitions(Aws::VectorAn array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline HyperParameterAlgorithmSpecification& AddMetricDefinitions(const MetricDefinition& value) { m_metricDefinitionsHasBeenSet = true; m_metricDefinitions.push_back(value); return *this; } /** *An array of MetricDefinition * objects that specify the metrics that the algorithm emits.
*/ inline HyperParameterAlgorithmSpecification& AddMetricDefinitions(MetricDefinition&& value) { m_metricDefinitionsHasBeenSet = true; m_metricDefinitions.push_back(std::move(value)); return *this; } private: Aws::String m_trainingImage; bool m_trainingImageHasBeenSet = false; TrainingInputMode m_trainingInputMode; bool m_trainingInputModeHasBeenSet = false; Aws::String m_algorithmName; bool m_algorithmNameHasBeenSet = false; Aws::Vector