/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Contains information about the location of input model artifacts, the name
* and shape of the expected data inputs, and the framework in which the model was
* trained.See Also:
AWS
* API Reference
The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline const Aws::String& GetS3Uri() const{ return m_s3Uri; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline bool S3UriHasBeenSet() const { return m_s3UriHasBeenSet; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(const Aws::String& value) { m_s3UriHasBeenSet = true; m_s3Uri = value; } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(Aws::String&& value) { m_s3UriHasBeenSet = true; m_s3Uri = std::move(value); } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline void SetS3Uri(const char* value) { m_s3UriHasBeenSet = true; m_s3Uri.assign(value); } /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(const Aws::String& value) { SetS3Uri(value); return *this;} /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(Aws::String&& value) { SetS3Uri(std::move(value)); return *this;} /** *The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix).
*/ inline InputConfig& WithS3Uri(const char* value) { SetS3Uri(value); return *this;} /** *Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Specifies the name and shape of the expected data inputs for your trained
* model with a JSON dictionary form. The data inputs are Framework
* specific.
TensorFlow
: You must specify the name
* and shape (NHWC format) of the expected data inputs using a dictionary format
* for your trained model. The dictionary formats required for the console and CLI
* are different.
Examples for one input:
If
* using the console, {"input":[1,1024,1024,3]}
If
* using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
* {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If
* using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the
* name and shape (NCHW format) of expected data inputs using a dictionary format
* for your trained model. Note that while Keras model artifacts should be uploaded
* in NHWC (channel-last) format, DataInputConfig
should be specified
* in NCHW (channel-first) format. The dictionary formats required for the console
* and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
* {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224],
* \"input_2\":[1,3,224,224]}
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW
* format) of the expected data inputs in order using a dictionary format for your
* trained model. The dictionary formats required for the console and CLI are
* different.
Examples for one input:
If using
* the console, {"data":[1,3,1024,1024]}
If using
* the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
* {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If
* using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either
* specify the name and shape (NCHW format) of expected data inputs in order using
* a dictionary format for your trained model or you can specify the shape only
* using a list format. The dictionary formats required for the console and CLI are
* different. The list formats for the console and CLI are the same.
Examples for one input in dictionary format:
If using the
* console, {"input0":[1,3,224,224]}
If using the
* CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using
* the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224],
* \"input1\":[1,3,224,224]}
Example for two
* inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not
* needed.
DataInputConfig
supports the following
* parameters for CoreML
TargetDevice
(ML Model
* format):
shape
: Input shape, for example
* {"input_1": {"shape": [1,224,224,3]}}
. In addition to static input
* shapes, CoreML converter supports Flexible input shapes:
Range
* Dimension. You can use the Range Dimension feature if you know the input shape
* will be within some specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select
* set of inputs. You can enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You
* can set a default shape during conversion for both Range Dimension and
* Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224,
* 3], "default_shape": [1, 224, 224, 3]}}
* type
: Input type. Allowed values: Image
and
* Tensor
. By default, the converter generates an ML Model with inputs
* of type Tensor (MultiArray). User can set input type to be Image. Image input
* type requires additional input parameters such as bias
and
* scale
.
bias
: If the input type is
* an Image, you need to provide the bias vector.
* scale
: If the input type is an Image, you need to provide a scale
* factor.
CoreML ClassifierConfig
parameters can
* be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch
* models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
* [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
* "default_shape": [1,3,224,224]}]
Image * type input:
"DataInputConfig": {"input_1": {"shape":
* [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
* "bias": [-1,-1,-1], "scale": 0.007843137255}}
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Image type input without input name * (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224],
* [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias":
* [-1,-1,-1], "scale": 0.007843137255}]
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
Depending on the model format,
* DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the
* input names from signature_def_key
and the input model shapes for
* DataInputConfig
. Specify the signature_def_key
in
* OutputConfig:CompilerOptions
if the model does not use
* TensorFlow's default signature def key. For example:
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
* "CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify
* the input tensor names and shapes in DataInputConfig
and the output
* tensor names for output_names
in
* OutputConfig:CompilerOptions
. For example:
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline const Framework& GetFramework() const{ return m_framework; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline bool FrameworkHasBeenSet() const { return m_frameworkHasBeenSet; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline void SetFramework(const Framework& value) { m_frameworkHasBeenSet = true; m_framework = value; } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline void SetFramework(Framework&& value) { m_frameworkHasBeenSet = true; m_framework = std::move(value); } /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline InputConfig& WithFramework(const Framework& value) { SetFramework(value); return *this;} /** *Identifies the framework in which the model was trained. For example: * TENSORFLOW.
*/ inline InputConfig& WithFramework(Framework&& value) { SetFramework(std::move(value)); return *this;} /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline const Aws::String& GetFrameworkVersion() const{ return m_frameworkVersion; } /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline bool FrameworkVersionHasBeenSet() const { return m_frameworkVersionHasBeenSet; } /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline void SetFrameworkVersion(const Aws::String& value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion = value; } /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline void SetFrameworkVersion(Aws::String&& value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion = std::move(value); } /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline void SetFrameworkVersion(const char* value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion.assign(value); } /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline InputConfig& WithFrameworkVersion(const Aws::String& value) { SetFrameworkVersion(value); return *this;} /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline InputConfig& WithFrameworkVersion(Aws::String&& value) { SetFrameworkVersion(std::move(value)); return *this;} /** *Specifies the framework version to use. This API field is only supported for * the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For * information about framework versions supported for cloud targets and edge * devices, see Cloud * Supported Instance Types and Frameworks and Edge * Supported Frameworks.
*/ inline InputConfig& WithFrameworkVersion(const char* value) { SetFrameworkVersion(value); return *this;} private: Aws::String m_s3Uri; bool m_s3UriHasBeenSet = false; Aws::String m_dataInputConfig; bool m_dataInputConfigHasBeenSet = false; Framework m_framework; bool m_frameworkHasBeenSet = false; Aws::String m_frameworkVersion; bool m_frameworkVersionHasBeenSet = false; }; } // namespace Model } // namespace SageMaker } // namespace Aws