/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Specifies mandatory fields for running an Inference Recommender job directly
* in the CreateInferenceRecommendationsJob
* API. The fields specified in ContainerConfig
override the
* corresponding fields in the model package. Use ContainerConfig
if
* you want to specify these fields for the recommendation job but don't want to
* edit them in your model package.See Also:
AWS
* API Reference
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning domain of the model and its components.
Valid
* Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
* MACHINE_LEARNING
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning task that the model accomplishes.
Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION |
* IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The machine learning framework of the container image.
Valid Values:
* TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
The framework version of the container image.
*/ inline const Aws::String& GetFrameworkVersion() const{ return m_frameworkVersion; } /** *The framework version of the container image.
*/ inline bool FrameworkVersionHasBeenSet() const { return m_frameworkVersionHasBeenSet; } /** *The framework version of the container image.
*/ inline void SetFrameworkVersion(const Aws::String& value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion = value; } /** *The framework version of the container image.
*/ inline void SetFrameworkVersion(Aws::String&& value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion = std::move(value); } /** *The framework version of the container image.
*/ inline void SetFrameworkVersion(const char* value) { m_frameworkVersionHasBeenSet = true; m_frameworkVersion.assign(value); } /** *The framework version of the container image.
*/ inline RecommendationJobContainerConfig& WithFrameworkVersion(const Aws::String& value) { SetFrameworkVersion(value); return *this;} /** *The framework version of the container image.
*/ inline RecommendationJobContainerConfig& WithFrameworkVersion(Aws::String&& value) { SetFrameworkVersion(std::move(value)); return *this;} /** *The framework version of the container image.
*/ inline RecommendationJobContainerConfig& WithFrameworkVersion(const char* value) { SetFrameworkVersion(value); return *this;} /** *Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
Specifies the SamplePayloadUrl
and all other sample
* payload-related fields.
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
The name of a pre-trained machine learning model benchmarked by Amazon * SageMaker Inference Recommender that matches your model.
Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge |
* vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
* resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
* | xceptionV1-keras | resnet50 | retinanet
A list of the instance types that are used to generate inferences in * real-time.
*/ inline const Aws::VectorA list of the instance types that are used to generate inferences in * real-time.
*/ inline bool SupportedInstanceTypesHasBeenSet() const { return m_supportedInstanceTypesHasBeenSet; } /** *A list of the instance types that are used to generate inferences in * real-time.
*/ inline void SetSupportedInstanceTypes(const Aws::VectorA list of the instance types that are used to generate inferences in * real-time.
*/ inline void SetSupportedInstanceTypes(Aws::VectorA list of the instance types that are used to generate inferences in * real-time.
*/ inline RecommendationJobContainerConfig& WithSupportedInstanceTypes(const Aws::VectorA list of the instance types that are used to generate inferences in * real-time.
*/ inline RecommendationJobContainerConfig& WithSupportedInstanceTypes(Aws::VectorA list of the instance types that are used to generate inferences in * real-time.
*/ inline RecommendationJobContainerConfig& AddSupportedInstanceTypes(const Aws::String& value) { m_supportedInstanceTypesHasBeenSet = true; m_supportedInstanceTypes.push_back(value); return *this; } /** *A list of the instance types that are used to generate inferences in * real-time.
*/ inline RecommendationJobContainerConfig& AddSupportedInstanceTypes(Aws::String&& value) { m_supportedInstanceTypesHasBeenSet = true; m_supportedInstanceTypes.push_back(std::move(value)); return *this; } /** *A list of the instance types that are used to generate inferences in * real-time.
*/ inline RecommendationJobContainerConfig& AddSupportedInstanceTypes(const char* value) { m_supportedInstanceTypesHasBeenSet = true; m_supportedInstanceTypes.push_back(value); return *this; } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline const Aws::String& GetDataInputConfig() const{ return m_dataInputConfig; } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline bool DataInputConfigHasBeenSet() const { return m_dataInputConfigHasBeenSet; } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline void SetDataInputConfig(const Aws::String& value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig = value; } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline void SetDataInputConfig(Aws::String&& value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig = std::move(value); } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline void SetDataInputConfig(const char* value) { m_dataInputConfigHasBeenSet = true; m_dataInputConfig.assign(value); } /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline RecommendationJobContainerConfig& WithDataInputConfig(const Aws::String& value) { SetDataInputConfig(value); return *this;} /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline RecommendationJobContainerConfig& WithDataInputConfig(Aws::String&& value) { SetDataInputConfig(std::move(value)); return *this;} /** *Specifies the name and shape of the expected data inputs for your trained * model with a JSON dictionary form. This field is used for optimizing your model * using SageMaker Neo. For more information, see DataInputConfig.
*/ inline RecommendationJobContainerConfig& WithDataInputConfig(const char* value) { SetDataInputConfig(value); return *this;} /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline const RecommendationJobSupportedEndpointType& GetSupportedEndpointType() const{ return m_supportedEndpointType; } /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline bool SupportedEndpointTypeHasBeenSet() const { return m_supportedEndpointTypeHasBeenSet; } /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline void SetSupportedEndpointType(const RecommendationJobSupportedEndpointType& value) { m_supportedEndpointTypeHasBeenSet = true; m_supportedEndpointType = value; } /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline void SetSupportedEndpointType(RecommendationJobSupportedEndpointType&& value) { m_supportedEndpointTypeHasBeenSet = true; m_supportedEndpointType = std::move(value); } /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline RecommendationJobContainerConfig& WithSupportedEndpointType(const RecommendationJobSupportedEndpointType& value) { SetSupportedEndpointType(value); return *this;} /** *The endpoint type to receive recommendations for. By default this is null, * and the results of the inference recommendation job return a combined list of * both real-time and serverless benchmarks. By specifying a value for this field, * you can receive a longer list of benchmarks for the desired endpoint type.
*/ inline RecommendationJobContainerConfig& WithSupportedEndpointType(RecommendationJobSupportedEndpointType&& value) { SetSupportedEndpointType(std::move(value)); return *this;} private: Aws::String m_domain; bool m_domainHasBeenSet = false; Aws::String m_task; bool m_taskHasBeenSet = false; Aws::String m_framework; bool m_frameworkHasBeenSet = false; Aws::String m_frameworkVersion; bool m_frameworkVersionHasBeenSet = false; RecommendationJobPayloadConfig m_payloadConfig; bool m_payloadConfigHasBeenSet = false; Aws::String m_nearestModelName; bool m_nearestModelNameHasBeenSet = false; Aws::Vector