/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include Defines the input needed to run a training job using the
* algorithm.See Also:
AWS
* API Reference
The hyperparameters used for the training job.
*/ inline const Aws::MapThe hyperparameters used for the training job.
*/ inline bool HyperParametersHasBeenSet() const { return m_hyperParametersHasBeenSet; } /** *The hyperparameters used for the training job.
*/ inline void SetHyperParameters(const Aws::MapThe hyperparameters used for the training job.
*/ inline void SetHyperParameters(Aws::MapThe hyperparameters used for the training job.
*/ inline TrainingJobDefinition& WithHyperParameters(const Aws::MapThe hyperparameters used for the training job.
*/ inline TrainingJobDefinition& WithHyperParameters(Aws::MapThe hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(const Aws::String& key, const Aws::String& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, value); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(Aws::String&& key, const Aws::String& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), value); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(const Aws::String& key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, std::move(value)); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(Aws::String&& key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), std::move(value)); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(const char* key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, std::move(value)); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(Aws::String&& key, const char* value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), value); return *this; } /** *The hyperparameters used for the training job.
*/ inline TrainingJobDefinition& AddHyperParameters(const char* key, const char* value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, value); return *this; } /** *An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
An array of Channel
objects, each of which specifies an input
* source.
the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline const OutputDataConfig& GetOutputDataConfig() const{ return m_outputDataConfig; } /** *the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline bool OutputDataConfigHasBeenSet() const { return m_outputDataConfigHasBeenSet; } /** *the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline void SetOutputDataConfig(const OutputDataConfig& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = value; } /** *the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline void SetOutputDataConfig(OutputDataConfig&& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = std::move(value); } /** *the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline TrainingJobDefinition& WithOutputDataConfig(const OutputDataConfig& value) { SetOutputDataConfig(value); return *this;} /** *the path to the S3 bucket where you want to store model artifacts. SageMaker * creates subfolders for the artifacts.
*/ inline TrainingJobDefinition& WithOutputDataConfig(OutputDataConfig&& value) { SetOutputDataConfig(std::move(value)); return *this;} /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline const ResourceConfig& GetResourceConfig() const{ return m_resourceConfig; } /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline bool ResourceConfigHasBeenSet() const { return m_resourceConfigHasBeenSet; } /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline void SetResourceConfig(const ResourceConfig& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = value; } /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline void SetResourceConfig(ResourceConfig&& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = std::move(value); } /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline TrainingJobDefinition& WithResourceConfig(const ResourceConfig& value) { SetResourceConfig(value); return *this;} /** *The resources, including the ML compute instances and ML storage volumes, to * use for model training.
*/ inline TrainingJobDefinition& WithResourceConfig(ResourceConfig&& value) { SetResourceConfig(std::move(value)); return *this;} /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline const StoppingCondition& GetStoppingCondition() const{ return m_stoppingCondition; } /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline bool StoppingConditionHasBeenSet() const { return m_stoppingConditionHasBeenSet; } /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline void SetStoppingCondition(const StoppingCondition& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = value; } /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline void SetStoppingCondition(StoppingCondition&& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = std::move(value); } /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline TrainingJobDefinition& WithStoppingCondition(const StoppingCondition& value) { SetStoppingCondition(value); return *this;} /** *Specifies a limit to how long a model training job can run. It also specifies * how long a managed Spot training job has to complete. When the job reaches the * time limit, SageMaker ends the training job. Use this API to cap model training * costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, * which delays job termination for 120 seconds. Algorithms can use this 120-second * window to save the model artifacts.
*/ inline TrainingJobDefinition& WithStoppingCondition(StoppingCondition&& value) { SetStoppingCondition(std::move(value)); return *this;} private: TrainingInputMode m_trainingInputMode; bool m_trainingInputModeHasBeenSet = false; Aws::Map