/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include The job completion criteria.See Also:
AWS
* API Reference
The value of the objective metric.
*/ inline double GetTargetObjectiveMetricValue() const{ return m_targetObjectiveMetricValue; } /** *The value of the objective metric.
*/ inline bool TargetObjectiveMetricValueHasBeenSet() const { return m_targetObjectiveMetricValueHasBeenSet; } /** *The value of the objective metric.
*/ inline void SetTargetObjectiveMetricValue(double value) { m_targetObjectiveMetricValueHasBeenSet = true; m_targetObjectiveMetricValue = value; } /** *The value of the objective metric.
*/ inline TuningJobCompletionCriteria& WithTargetObjectiveMetricValue(double value) { SetTargetObjectiveMetricValue(value); return *this;} /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline const BestObjectiveNotImproving& GetBestObjectiveNotImproving() const{ return m_bestObjectiveNotImproving; } /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline bool BestObjectiveNotImprovingHasBeenSet() const { return m_bestObjectiveNotImprovingHasBeenSet; } /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline void SetBestObjectiveNotImproving(const BestObjectiveNotImproving& value) { m_bestObjectiveNotImprovingHasBeenSet = true; m_bestObjectiveNotImproving = value; } /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline void SetBestObjectiveNotImproving(BestObjectiveNotImproving&& value) { m_bestObjectiveNotImprovingHasBeenSet = true; m_bestObjectiveNotImproving = std::move(value); } /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline TuningJobCompletionCriteria& WithBestObjectiveNotImproving(const BestObjectiveNotImproving& value) { SetBestObjectiveNotImproving(value); return *this;} /** *A flag to stop your hyperparameter tuning job if model performance fails to * improve as evaluated against an objective function.
*/ inline TuningJobCompletionCriteria& WithBestObjectiveNotImproving(BestObjectiveNotImproving&& value) { SetBestObjectiveNotImproving(std::move(value)); return *this;} /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline const ConvergenceDetected& GetConvergenceDetected() const{ return m_convergenceDetected; } /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline bool ConvergenceDetectedHasBeenSet() const { return m_convergenceDetectedHasBeenSet; } /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline void SetConvergenceDetected(const ConvergenceDetected& value) { m_convergenceDetectedHasBeenSet = true; m_convergenceDetected = value; } /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline void SetConvergenceDetected(ConvergenceDetected&& value) { m_convergenceDetectedHasBeenSet = true; m_convergenceDetected = std::move(value); } /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline TuningJobCompletionCriteria& WithConvergenceDetected(const ConvergenceDetected& value) { SetConvergenceDetected(value); return *this;} /** *A flag to top your hyperparameter tuning job if automatic model tuning (AMT) * has detected that your model has converged as evaluated against your objective * function.
*/ inline TuningJobCompletionCriteria& WithConvergenceDetected(ConvergenceDetected&& value) { SetConvergenceDetected(std::move(value)); return *this;} private: double m_targetObjectiveMetricValue; bool m_targetObjectiveMetricValueHasBeenSet = false; BestObjectiveNotImproving m_bestObjectiveNotImproving; bool m_bestObjectiveNotImprovingHasBeenSet = false; ConvergenceDetected m_convergenceDetected; bool m_convergenceDetectedHasBeenSet = false; }; } // namespace Model } // namespace SageMaker } // namespace Aws