/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace SSM { namespace Model { /** *

Information about the association version.

See Also:

AWS * API Reference

*/ class AssociationVersionInfo { public: AWS_SSM_API AssociationVersionInfo(); AWS_SSM_API AssociationVersionInfo(Aws::Utils::Json::JsonView jsonValue); AWS_SSM_API AssociationVersionInfo& operator=(Aws::Utils::Json::JsonView jsonValue); AWS_SSM_API Aws::Utils::Json::JsonValue Jsonize() const; /** *

The ID created by the system when the association was created.

*/ inline const Aws::String& GetAssociationId() const{ return m_associationId; } /** *

The ID created by the system when the association was created.

*/ inline bool AssociationIdHasBeenSet() const { return m_associationIdHasBeenSet; } /** *

The ID created by the system when the association was created.

*/ inline void SetAssociationId(const Aws::String& value) { m_associationIdHasBeenSet = true; m_associationId = value; } /** *

The ID created by the system when the association was created.

*/ inline void SetAssociationId(Aws::String&& value) { m_associationIdHasBeenSet = true; m_associationId = std::move(value); } /** *

The ID created by the system when the association was created.

*/ inline void SetAssociationId(const char* value) { m_associationIdHasBeenSet = true; m_associationId.assign(value); } /** *

The ID created by the system when the association was created.

*/ inline AssociationVersionInfo& WithAssociationId(const Aws::String& value) { SetAssociationId(value); return *this;} /** *

The ID created by the system when the association was created.

*/ inline AssociationVersionInfo& WithAssociationId(Aws::String&& value) { SetAssociationId(std::move(value)); return *this;} /** *

The ID created by the system when the association was created.

*/ inline AssociationVersionInfo& WithAssociationId(const char* value) { SetAssociationId(value); return *this;} /** *

The association version.

*/ inline const Aws::String& GetAssociationVersion() const{ return m_associationVersion; } /** *

The association version.

*/ inline bool AssociationVersionHasBeenSet() const { return m_associationVersionHasBeenSet; } /** *

The association version.

*/ inline void SetAssociationVersion(const Aws::String& value) { m_associationVersionHasBeenSet = true; m_associationVersion = value; } /** *

The association version.

*/ inline void SetAssociationVersion(Aws::String&& value) { m_associationVersionHasBeenSet = true; m_associationVersion = std::move(value); } /** *

The association version.

*/ inline void SetAssociationVersion(const char* value) { m_associationVersionHasBeenSet = true; m_associationVersion.assign(value); } /** *

The association version.

*/ inline AssociationVersionInfo& WithAssociationVersion(const Aws::String& value) { SetAssociationVersion(value); return *this;} /** *

The association version.

*/ inline AssociationVersionInfo& WithAssociationVersion(Aws::String&& value) { SetAssociationVersion(std::move(value)); return *this;} /** *

The association version.

*/ inline AssociationVersionInfo& WithAssociationVersion(const char* value) { SetAssociationVersion(value); return *this;} /** *

The date the association version was created.

*/ inline const Aws::Utils::DateTime& GetCreatedDate() const{ return m_createdDate; } /** *

The date the association version was created.

*/ inline bool CreatedDateHasBeenSet() const { return m_createdDateHasBeenSet; } /** *

The date the association version was created.

*/ inline void SetCreatedDate(const Aws::Utils::DateTime& value) { m_createdDateHasBeenSet = true; m_createdDate = value; } /** *

The date the association version was created.

*/ inline void SetCreatedDate(Aws::Utils::DateTime&& value) { m_createdDateHasBeenSet = true; m_createdDate = std::move(value); } /** *

The date the association version was created.

*/ inline AssociationVersionInfo& WithCreatedDate(const Aws::Utils::DateTime& value) { SetCreatedDate(value); return *this;} /** *

The date the association version was created.

*/ inline AssociationVersionInfo& WithCreatedDate(Aws::Utils::DateTime&& value) { SetCreatedDate(std::move(value)); return *this;} /** *

The name specified when the association was created.

*/ inline const Aws::String& GetName() const{ return m_name; } /** *

The name specified when the association was created.

*/ inline bool NameHasBeenSet() const { return m_nameHasBeenSet; } /** *

The name specified when the association was created.

*/ inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; } /** *

The name specified when the association was created.

*/ inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); } /** *

The name specified when the association was created.

*/ inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); } /** *

The name specified when the association was created.

*/ inline AssociationVersionInfo& WithName(const Aws::String& value) { SetName(value); return *this;} /** *

The name specified when the association was created.

*/ inline AssociationVersionInfo& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;} /** *

The name specified when the association was created.

*/ inline AssociationVersionInfo& WithName(const char* value) { SetName(value); return *this;} /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline const Aws::String& GetDocumentVersion() const{ return m_documentVersion; } /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline bool DocumentVersionHasBeenSet() const { return m_documentVersionHasBeenSet; } /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline void SetDocumentVersion(const Aws::String& value) { m_documentVersionHasBeenSet = true; m_documentVersion = value; } /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline void SetDocumentVersion(Aws::String&& value) { m_documentVersionHasBeenSet = true; m_documentVersion = std::move(value); } /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline void SetDocumentVersion(const char* value) { m_documentVersionHasBeenSet = true; m_documentVersion.assign(value); } /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline AssociationVersionInfo& WithDocumentVersion(const Aws::String& value) { SetDocumentVersion(value); return *this;} /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline AssociationVersionInfo& WithDocumentVersion(Aws::String&& value) { SetDocumentVersion(std::move(value)); return *this;} /** *

The version of an Amazon Web Services Systems Manager document (SSM document) * used when the association version was created.

*/ inline AssociationVersionInfo& WithDocumentVersion(const char* value) { SetDocumentVersion(value); return *this;} /** *

Parameters specified when the association version was created.

*/ inline const Aws::Map>& GetParameters() const{ return m_parameters; } /** *

Parameters specified when the association version was created.

*/ inline bool ParametersHasBeenSet() const { return m_parametersHasBeenSet; } /** *

Parameters specified when the association version was created.

*/ inline void SetParameters(const Aws::Map>& value) { m_parametersHasBeenSet = true; m_parameters = value; } /** *

Parameters specified when the association version was created.

*/ inline void SetParameters(Aws::Map>&& value) { m_parametersHasBeenSet = true; m_parameters = std::move(value); } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& WithParameters(const Aws::Map>& value) { SetParameters(value); return *this;} /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& WithParameters(Aws::Map>&& value) { SetParameters(std::move(value)); return *this;} /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(const Aws::String& key, const Aws::Vector& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(Aws::String&& key, const Aws::Vector& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), value); return *this; } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(const Aws::String& key, Aws::Vector&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(Aws::String&& key, Aws::Vector&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), std::move(value)); return *this; } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(const char* key, Aws::Vector&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; } /** *

Parameters specified when the association version was created.

*/ inline AssociationVersionInfo& AddParameters(const char* key, const Aws::Vector& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; } /** *

The targets specified for the association when the association version was * created.

*/ inline const Aws::Vector& GetTargets() const{ return m_targets; } /** *

The targets specified for the association when the association version was * created.

*/ inline bool TargetsHasBeenSet() const { return m_targetsHasBeenSet; } /** *

The targets specified for the association when the association version was * created.

*/ inline void SetTargets(const Aws::Vector& value) { m_targetsHasBeenSet = true; m_targets = value; } /** *

The targets specified for the association when the association version was * created.

*/ inline void SetTargets(Aws::Vector&& value) { m_targetsHasBeenSet = true; m_targets = std::move(value); } /** *

The targets specified for the association when the association version was * created.

*/ inline AssociationVersionInfo& WithTargets(const Aws::Vector& value) { SetTargets(value); return *this;} /** *

The targets specified for the association when the association version was * created.

*/ inline AssociationVersionInfo& WithTargets(Aws::Vector&& value) { SetTargets(std::move(value)); return *this;} /** *

The targets specified for the association when the association version was * created.

*/ inline AssociationVersionInfo& AddTargets(const Target& value) { m_targetsHasBeenSet = true; m_targets.push_back(value); return *this; } /** *

The targets specified for the association when the association version was * created.

*/ inline AssociationVersionInfo& AddTargets(Target&& value) { m_targetsHasBeenSet = true; m_targets.push_back(std::move(value)); return *this; } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline const Aws::String& GetScheduleExpression() const{ return m_scheduleExpression; } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline bool ScheduleExpressionHasBeenSet() const { return m_scheduleExpressionHasBeenSet; } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline void SetScheduleExpression(const Aws::String& value) { m_scheduleExpressionHasBeenSet = true; m_scheduleExpression = value; } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline void SetScheduleExpression(Aws::String&& value) { m_scheduleExpressionHasBeenSet = true; m_scheduleExpression = std::move(value); } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline void SetScheduleExpression(const char* value) { m_scheduleExpressionHasBeenSet = true; m_scheduleExpression.assign(value); } /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline AssociationVersionInfo& WithScheduleExpression(const Aws::String& value) { SetScheduleExpression(value); return *this;} /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline AssociationVersionInfo& WithScheduleExpression(Aws::String&& value) { SetScheduleExpression(std::move(value)); return *this;} /** *

The cron or rate schedule specified for the association when the association * version was created.

*/ inline AssociationVersionInfo& WithScheduleExpression(const char* value) { SetScheduleExpression(value); return *this;} /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline const InstanceAssociationOutputLocation& GetOutputLocation() const{ return m_outputLocation; } /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline bool OutputLocationHasBeenSet() const { return m_outputLocationHasBeenSet; } /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline void SetOutputLocation(const InstanceAssociationOutputLocation& value) { m_outputLocationHasBeenSet = true; m_outputLocation = value; } /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline void SetOutputLocation(InstanceAssociationOutputLocation&& value) { m_outputLocationHasBeenSet = true; m_outputLocation = std::move(value); } /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline AssociationVersionInfo& WithOutputLocation(const InstanceAssociationOutputLocation& value) { SetOutputLocation(value); return *this;} /** *

The location in Amazon S3 specified for the association when the association * version was created.

*/ inline AssociationVersionInfo& WithOutputLocation(InstanceAssociationOutputLocation&& value) { SetOutputLocation(std::move(value)); return *this;} /** *

The name specified for the association version when the association version * was created.

*/ inline const Aws::String& GetAssociationName() const{ return m_associationName; } /** *

The name specified for the association version when the association version * was created.

*/ inline bool AssociationNameHasBeenSet() const { return m_associationNameHasBeenSet; } /** *

The name specified for the association version when the association version * was created.

*/ inline void SetAssociationName(const Aws::String& value) { m_associationNameHasBeenSet = true; m_associationName = value; } /** *

The name specified for the association version when the association version * was created.

*/ inline void SetAssociationName(Aws::String&& value) { m_associationNameHasBeenSet = true; m_associationName = std::move(value); } /** *

The name specified for the association version when the association version * was created.

*/ inline void SetAssociationName(const char* value) { m_associationNameHasBeenSet = true; m_associationName.assign(value); } /** *

The name specified for the association version when the association version * was created.

*/ inline AssociationVersionInfo& WithAssociationName(const Aws::String& value) { SetAssociationName(value); return *this;} /** *

The name specified for the association version when the association version * was created.

*/ inline AssociationVersionInfo& WithAssociationName(Aws::String&& value) { SetAssociationName(std::move(value)); return *this;} /** *

The name specified for the association version when the association version * was created.

*/ inline AssociationVersionInfo& WithAssociationName(const char* value) { SetAssociationName(value); return *this;} /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline const Aws::String& GetMaxErrors() const{ return m_maxErrors; } /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline bool MaxErrorsHasBeenSet() const { return m_maxErrorsHasBeenSet; } /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline void SetMaxErrors(const Aws::String& value) { m_maxErrorsHasBeenSet = true; m_maxErrors = value; } /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline void SetMaxErrors(Aws::String&& value) { m_maxErrorsHasBeenSet = true; m_maxErrors = std::move(value); } /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline void SetMaxErrors(const char* value) { m_maxErrorsHasBeenSet = true; m_maxErrors.assign(value); } /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline AssociationVersionInfo& WithMaxErrors(const Aws::String& value) { SetMaxErrors(value); return *this;} /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline AssociationVersionInfo& WithMaxErrors(Aws::String&& value) { SetMaxErrors(std::move(value)); return *this;} /** *

The number of errors that are allowed before the system stops sending * requests to run the association on additional targets. You can specify either an * absolute number of errors, for example 10, or a percentage of the target set, * for example 10%. If you specify 3, for example, the system stops sending * requests when the fourth error is received. If you specify 0, then the system * stops sending requests after the first error is returned. If you run an * association on 50 managed nodes and set MaxError to 10%, then the * system stops sending the request when the sixth error is received.

*

Executions that are already running an association when * MaxErrors is reached are allowed to complete, but some of these * executions may fail as well. If you need to ensure that there won't be more than * max-errors failed executions, set MaxConcurrency to 1 so that * executions proceed one at a time.

*/ inline AssociationVersionInfo& WithMaxErrors(const char* value) { SetMaxErrors(value); return *this;} /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline const Aws::String& GetMaxConcurrency() const{ return m_maxConcurrency; } /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline bool MaxConcurrencyHasBeenSet() const { return m_maxConcurrencyHasBeenSet; } /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline void SetMaxConcurrency(const Aws::String& value) { m_maxConcurrencyHasBeenSet = true; m_maxConcurrency = value; } /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline void SetMaxConcurrency(Aws::String&& value) { m_maxConcurrencyHasBeenSet = true; m_maxConcurrency = std::move(value); } /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline void SetMaxConcurrency(const char* value) { m_maxConcurrencyHasBeenSet = true; m_maxConcurrency.assign(value); } /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline AssociationVersionInfo& WithMaxConcurrency(const Aws::String& value) { SetMaxConcurrency(value); return *this;} /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline AssociationVersionInfo& WithMaxConcurrency(Aws::String&& value) { SetMaxConcurrency(std::move(value)); return *this;} /** *

The maximum number of targets allowed to run the association at the same * time. You can specify a number, for example 10, or a percentage of the target * set, for example 10%. The default value is 100%, which means all targets run the * association at the same time.

If a new managed node starts and attempts * to run an association while Systems Manager is running * MaxConcurrency associations, the association is allowed to run. * During the next association interval, the new managed node will process its * association within the limit specified for MaxConcurrency.

*/ inline AssociationVersionInfo& WithMaxConcurrency(const char* value) { SetMaxConcurrency(value); return *this;} /** *

The severity level that is assigned to the association.

*/ inline const AssociationComplianceSeverity& GetComplianceSeverity() const{ return m_complianceSeverity; } /** *

The severity level that is assigned to the association.

*/ inline bool ComplianceSeverityHasBeenSet() const { return m_complianceSeverityHasBeenSet; } /** *

The severity level that is assigned to the association.

*/ inline void SetComplianceSeverity(const AssociationComplianceSeverity& value) { m_complianceSeverityHasBeenSet = true; m_complianceSeverity = value; } /** *

The severity level that is assigned to the association.

*/ inline void SetComplianceSeverity(AssociationComplianceSeverity&& value) { m_complianceSeverityHasBeenSet = true; m_complianceSeverity = std::move(value); } /** *

The severity level that is assigned to the association.

*/ inline AssociationVersionInfo& WithComplianceSeverity(const AssociationComplianceSeverity& value) { SetComplianceSeverity(value); return *this;} /** *

The severity level that is assigned to the association.

*/ inline AssociationVersionInfo& WithComplianceSeverity(AssociationComplianceSeverity&& value) { SetComplianceSeverity(std::move(value)); return *this;} /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline const AssociationSyncCompliance& GetSyncCompliance() const{ return m_syncCompliance; } /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline bool SyncComplianceHasBeenSet() const { return m_syncComplianceHasBeenSet; } /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline void SetSyncCompliance(const AssociationSyncCompliance& value) { m_syncComplianceHasBeenSet = true; m_syncCompliance = value; } /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline void SetSyncCompliance(AssociationSyncCompliance&& value) { m_syncComplianceHasBeenSet = true; m_syncCompliance = std::move(value); } /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline AssociationVersionInfo& WithSyncCompliance(const AssociationSyncCompliance& value) { SetSyncCompliance(value); return *this;} /** *

The mode for generating association compliance. You can specify * AUTO or MANUAL. In AUTO mode, the system * uses the status of the association execution to determine the compliance status. * If the association execution runs successfully, then the association is * COMPLIANT. If the association execution doesn't run successfully, * the association is NON-COMPLIANT.

In MANUAL * mode, you must specify the AssociationId as a parameter for the * PutComplianceItems API operation. In this case, compliance data isn't * managed by State Manager, a capability of Amazon Web Services Systems Manager. * It is managed by your direct call to the PutComplianceItems API * operation.

By default, all associations use AUTO mode.

*/ inline AssociationVersionInfo& WithSyncCompliance(AssociationSyncCompliance&& value) { SetSyncCompliance(std::move(value)); return *this;} /** *

By default, when you create a new associations, the system runs it * immediately after it is created and then according to the schedule you * specified. Specify this option if you don't want an association to run * immediately after you create it. This parameter isn't supported for rate * expressions.

*/ inline bool GetApplyOnlyAtCronInterval() const{ return m_applyOnlyAtCronInterval; } /** *

By default, when you create a new associations, the system runs it * immediately after it is created and then according to the schedule you * specified. Specify this option if you don't want an association to run * immediately after you create it. This parameter isn't supported for rate * expressions.

*/ inline bool ApplyOnlyAtCronIntervalHasBeenSet() const { return m_applyOnlyAtCronIntervalHasBeenSet; } /** *

By default, when you create a new associations, the system runs it * immediately after it is created and then according to the schedule you * specified. Specify this option if you don't want an association to run * immediately after you create it. This parameter isn't supported for rate * expressions.

*/ inline void SetApplyOnlyAtCronInterval(bool value) { m_applyOnlyAtCronIntervalHasBeenSet = true; m_applyOnlyAtCronInterval = value; } /** *

By default, when you create a new associations, the system runs it * immediately after it is created and then according to the schedule you * specified. Specify this option if you don't want an association to run * immediately after you create it. This parameter isn't supported for rate * expressions.

*/ inline AssociationVersionInfo& WithApplyOnlyAtCronInterval(bool value) { SetApplyOnlyAtCronInterval(value); return *this;} /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline const Aws::Vector& GetCalendarNames() const{ return m_calendarNames; } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline bool CalendarNamesHasBeenSet() const { return m_calendarNamesHasBeenSet; } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline void SetCalendarNames(const Aws::Vector& value) { m_calendarNamesHasBeenSet = true; m_calendarNames = value; } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline void SetCalendarNames(Aws::Vector&& value) { m_calendarNamesHasBeenSet = true; m_calendarNames = std::move(value); } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline AssociationVersionInfo& WithCalendarNames(const Aws::Vector& value) { SetCalendarNames(value); return *this;} /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline AssociationVersionInfo& WithCalendarNames(Aws::Vector&& value) { SetCalendarNames(std::move(value)); return *this;} /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline AssociationVersionInfo& AddCalendarNames(const Aws::String& value) { m_calendarNamesHasBeenSet = true; m_calendarNames.push_back(value); return *this; } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline AssociationVersionInfo& AddCalendarNames(Aws::String&& value) { m_calendarNamesHasBeenSet = true; m_calendarNames.push_back(std::move(value)); return *this; } /** *

The names or Amazon Resource Names (ARNs) of the Change Calendar type * documents your associations are gated under. The associations for this version * only run when that Change Calendar is open. For more information, see Amazon * Web Services Systems Manager Change Calendar.

*/ inline AssociationVersionInfo& AddCalendarNames(const char* value) { m_calendarNamesHasBeenSet = true; m_calendarNames.push_back(value); return *this; } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline const Aws::Vector& GetTargetLocations() const{ return m_targetLocations; } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline bool TargetLocationsHasBeenSet() const { return m_targetLocationsHasBeenSet; } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline void SetTargetLocations(const Aws::Vector& value) { m_targetLocationsHasBeenSet = true; m_targetLocations = value; } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline void SetTargetLocations(Aws::Vector&& value) { m_targetLocationsHasBeenSet = true; m_targetLocations = std::move(value); } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline AssociationVersionInfo& WithTargetLocations(const Aws::Vector& value) { SetTargetLocations(value); return *this;} /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline AssociationVersionInfo& WithTargetLocations(Aws::Vector&& value) { SetTargetLocations(std::move(value)); return *this;} /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline AssociationVersionInfo& AddTargetLocations(const TargetLocation& value) { m_targetLocationsHasBeenSet = true; m_targetLocations.push_back(value); return *this; } /** *

The combination of Amazon Web Services Regions and Amazon Web Services * accounts where you wanted to run the association when this association version * was created.

*/ inline AssociationVersionInfo& AddTargetLocations(TargetLocation&& value) { m_targetLocationsHasBeenSet = true; m_targetLocations.push_back(std::move(value)); return *this; } /** *

Number of days to wait after the scheduled day to run an association.

*/ inline int GetScheduleOffset() const{ return m_scheduleOffset; } /** *

Number of days to wait after the scheduled day to run an association.

*/ inline bool ScheduleOffsetHasBeenSet() const { return m_scheduleOffsetHasBeenSet; } /** *

Number of days to wait after the scheduled day to run an association.

*/ inline void SetScheduleOffset(int value) { m_scheduleOffsetHasBeenSet = true; m_scheduleOffset = value; } /** *

Number of days to wait after the scheduled day to run an association.

*/ inline AssociationVersionInfo& WithScheduleOffset(int value) { SetScheduleOffset(value); return *this;} /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline const Aws::Vector>>& GetTargetMaps() const{ return m_targetMaps; } /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline bool TargetMapsHasBeenSet() const { return m_targetMapsHasBeenSet; } /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline void SetTargetMaps(const Aws::Vector>>& value) { m_targetMapsHasBeenSet = true; m_targetMaps = value; } /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline void SetTargetMaps(Aws::Vector>>&& value) { m_targetMapsHasBeenSet = true; m_targetMaps = std::move(value); } /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline AssociationVersionInfo& WithTargetMaps(const Aws::Vector>>& value) { SetTargetMaps(value); return *this;} /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline AssociationVersionInfo& WithTargetMaps(Aws::Vector>>&& value) { SetTargetMaps(std::move(value)); return *this;} /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline AssociationVersionInfo& AddTargetMaps(const Aws::Map>& value) { m_targetMapsHasBeenSet = true; m_targetMaps.push_back(value); return *this; } /** *

A key-value mapping of document parameters to target resources. Both Targets * and TargetMaps can't be specified together.

*/ inline AssociationVersionInfo& AddTargetMaps(Aws::Map>&& value) { m_targetMapsHasBeenSet = true; m_targetMaps.push_back(std::move(value)); return *this; } private: Aws::String m_associationId; bool m_associationIdHasBeenSet = false; Aws::String m_associationVersion; bool m_associationVersionHasBeenSet = false; Aws::Utils::DateTime m_createdDate; bool m_createdDateHasBeenSet = false; Aws::String m_name; bool m_nameHasBeenSet = false; Aws::String m_documentVersion; bool m_documentVersionHasBeenSet = false; Aws::Map> m_parameters; bool m_parametersHasBeenSet = false; Aws::Vector m_targets; bool m_targetsHasBeenSet = false; Aws::String m_scheduleExpression; bool m_scheduleExpressionHasBeenSet = false; InstanceAssociationOutputLocation m_outputLocation; bool m_outputLocationHasBeenSet = false; Aws::String m_associationName; bool m_associationNameHasBeenSet = false; Aws::String m_maxErrors; bool m_maxErrorsHasBeenSet = false; Aws::String m_maxConcurrency; bool m_maxConcurrencyHasBeenSet = false; AssociationComplianceSeverity m_complianceSeverity; bool m_complianceSeverityHasBeenSet = false; AssociationSyncCompliance m_syncCompliance; bool m_syncComplianceHasBeenSet = false; bool m_applyOnlyAtCronInterval; bool m_applyOnlyAtCronIntervalHasBeenSet = false; Aws::Vector m_calendarNames; bool m_calendarNamesHasBeenSet = false; Aws::Vector m_targetLocations; bool m_targetLocationsHasBeenSet = false; int m_scheduleOffset; bool m_scheduleOffsetHasBeenSet = false; Aws::Vector>> m_targetMaps; bool m_targetMapsHasBeenSet = false; }; } // namespace Model } // namespace SSM } // namespace Aws