// Code generated by smithy-go-codegen DO NOT EDIT. package types import ( smithydocument "github.com/aws/smithy-go/document" ) // The log odds metric details. Account Takeover Insights (ATI) model uses event // variables from the login data you provide to continuously calculate a set of // variables (aggregated variables) based on historical events. For example, your // ATI model might calculate the number of times an user has logged in using the // same IP address. In this case, event variables used to derive the aggregated // variables are IP address and user . type AggregatedLogOddsMetric struct { // The relative importance of the variables in the list to the other event // variable. // // This member is required. AggregatedVariablesImportance *float32 // The names of all the variables. // // This member is required. VariableNames []string noSmithyDocumentSerde } // The details of the impact of aggregated variables on the prediction score. // Account Takeover Insights (ATI) model uses the login data you provide to // continuously calculate a set of variables (aggregated variables) based on // historical events. For example, the model might calculate the number of times an // user has logged in using the same IP address. In this case, event variables used // to derive the aggregated variables are IP address and user . type AggregatedVariablesImpactExplanation struct { // The names of all the event variables that were used to derive the aggregated // variables. EventVariableNames []string // The raw, uninterpreted value represented as log-odds of the fraud. These values // are usually between -10 to +10, but range from -infinity to +infinity. // - A positive value indicates that the variables drove the risk score up. // - A negative value indicates that the variables drove the risk score down. LogOddsImpact *float32 // The relative impact of the aggregated variables in terms of magnitude on the // prediction scores. RelativeImpact *string noSmithyDocumentSerde } // The details of the relative importance of the aggregated variables. Account // Takeover Insights (ATI) model uses event variables from the login data you // provide to continuously calculate a set of variables (aggregated variables) // based on historical events. For example, your ATI model might calculate the // number of times an user has logged in using the same IP address. In this case, // event variables used to derive the aggregated variables are IP address and user . type AggregatedVariablesImportanceMetrics struct { // List of variables' metrics. LogOddsMetrics []AggregatedLogOddsMetric noSmithyDocumentSerde } // The metadata of a list. type AllowDenyList struct { // The name of the list. // // This member is required. Name *string // The ARN of the list. Arn *string // The time the list was created. CreatedTime *string // The description of the list. Description *string // The time the list was last updated. UpdatedTime *string // The variable type of the list. VariableType *string noSmithyDocumentSerde } // The Account Takeover Insights (ATI) model performance metrics data points. type ATIMetricDataPoint struct { // The anomaly discovery rate. This metric quantifies the percentage of anomalies // that can be detected by the model at the selected score threshold. A lower score // threshold increases the percentage of anomalies captured by the model, but would // also require challenging a larger percentage of login events, leading to a // higher customer friction. Adr *float32 // The account takeover discovery rate. This metric quantifies the percentage of // account compromise events that can be detected by the model at the selected // score threshold. This metric is only available if 50 or more entities with // at-least one labeled account takeover event is present in the ingested dataset. Atodr *float32 // The challenge rate. This indicates the percentage of login events that the // model recommends to challenge such as one-time password, multi-factor // authentication, and investigations. Cr *float32 // The model's threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 noSmithyDocumentSerde } // The Account Takeover Insights (ATI) model performance score. type ATIModelPerformance struct { // The anomaly separation index (ASI) score. This metric summarizes the overall // ability of the model to separate anomalous activities from the normal behavior. // Depending on the business, a large fraction of these anomalous activities can be // malicious and correspond to the account takeover attacks. A model with no // separability power will have the lowest possible ASI score of 0.5, whereas the a // model with a high separability power will have the highest possible ASI score of // 1.0 Asi *float32 noSmithyDocumentSerde } // The Account Takeover Insights (ATI) model training metric details. type ATITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []ATIMetricDataPoint // The model's overall performance scores. ModelPerformance *ATIModelPerformance noSmithyDocumentSerde } // Provides the error of the batch create variable API. type BatchCreateVariableError struct { // The error code. Code int32 // The error message. Message *string // The name. Name *string noSmithyDocumentSerde } // Provides the error of the batch get variable API. type BatchGetVariableError struct { // The error code. Code int32 // The error message. Message *string // The error name. Name *string noSmithyDocumentSerde } // The batch import job details. type BatchImport struct { // The ARN of the batch import job. Arn *string // Timestamp of when batch import job completed. CompletionTime *string // The name of the event type. EventTypeName *string // The number of records that failed to import. FailedRecordsCount *int32 // The reason batch import job failed. FailureReason *string // The ARN of the IAM role to use for this job request. IamRoleArn *string // The Amazon S3 location of your data file for batch import. InputPath *string // The ID of the batch import job. JobId *string // The Amazon S3 location of your output file. OutputPath *string // The number of records processed by batch import job. ProcessedRecordsCount *int32 // Timestamp of when the batch import job started. StartTime *string // The status of the batch import job. Status AsyncJobStatus // The total number of records in the batch import job. TotalRecordsCount *int32 noSmithyDocumentSerde } // The batch prediction details. type BatchPrediction struct { // The ARN of batch prediction job. Arn *string // Timestamp of when the batch prediction job completed. CompletionTime *string // The name of the detector. DetectorName *string // The detector version. DetectorVersion *string // The name of the event type. EventTypeName *string // The reason a batch prediction job failed. FailureReason *string // The ARN of the IAM role to use for this job request. IamRoleArn *string // The Amazon S3 location of your training file. InputPath *string // The job ID for the batch prediction. JobId *string // Timestamp of most recent heartbeat indicating the batch prediction job was // making progress. LastHeartbeatTime *string // The Amazon S3 location of your output file. OutputPath *string // The number of records processed by the batch prediction job. ProcessedRecordsCount *int32 // Timestamp of when the batch prediction job started. StartTime *string // The batch prediction status. Status AsyncJobStatus // The total number of records in the batch prediction job. TotalRecordsCount *int32 noSmithyDocumentSerde } // The model training data validation metrics. type DataValidationMetrics struct { // The field-specific model training validation messages. FieldLevelMessages []FieldValidationMessage // The file-specific model training data validation messages. FileLevelMessages []FileValidationMessage noSmithyDocumentSerde } // The detector. type Detector struct { // The detector ARN. Arn *string // Timestamp of when the detector was created. CreatedTime *string // The detector description. Description *string // The detector ID. DetectorId *string // The name of the event type. EventTypeName *string // Timestamp of when the detector was last updated. LastUpdatedTime *string noSmithyDocumentSerde } // The summary of the detector version. type DetectorVersionSummary struct { // The detector version description. Description *string // The detector version ID. DetectorVersionId *string // Timestamp of when the detector version was last updated. LastUpdatedTime *string // The detector version status. Status DetectorVersionStatus noSmithyDocumentSerde } // The entity details. type Entity struct { // The entity ID. If you do not know the entityId , you can pass unknown , which is // areserved string literal. // // This member is required. EntityId *string // The entity type. // // This member is required. EntityType *string noSmithyDocumentSerde } // The entity type details. type EntityType struct { // The entity type ARN. Arn *string // Timestamp of when the entity type was created. CreatedTime *string // The entity type description. Description *string // Timestamp of when the entity type was last updated. LastUpdatedTime *string // The entity type name. Name *string noSmithyDocumentSerde } // The details of the external (Amazon Sagemaker) model evaluated for generating // predictions. type EvaluatedExternalModel struct { // Input variables use for generating predictions. InputVariables map[string]string // The endpoint of the external (Amazon Sagemaker) model. ModelEndpoint *string // Output variables. OutputVariables map[string]string // Indicates whether event variables were used to generate predictions. UseEventVariables *bool noSmithyDocumentSerde } // The model version evaluated for generating prediction. type EvaluatedModelVersion struct { // Evaluations generated for the model version. Evaluations []ModelVersionEvaluation // The model ID. ModelId *string // The model type. Valid values: ONLINE_FRAUD_INSIGHTS | TRANSACTION_FRAUD_INSIGHTS ModelType *string // The model version. ModelVersion *string noSmithyDocumentSerde } // The details of the rule used for evaluating variable values. type EvaluatedRule struct { // Indicates whether the rule was evaluated. Evaluated *bool // The rule expression. Expression *string // The rule expression value. ExpressionWithValues *string // Indicates whether the rule matched. Matched *bool // The rule outcome. Outcomes []string // The rule ID. RuleId *string // The rule version. RuleVersion *string noSmithyDocumentSerde } // The event details. type Event struct { // The label associated with the event. CurrentLabel *string // The event entities. Entities []Entity // The event ID. EventId *string // The timestamp that defines when the event under evaluation occurred. The // timestamp must be specified using ISO 8601 standard in UTC. EventTimestamp *string // The event type. EventTypeName *string // Names of the event type's variables you defined in Amazon Fraud Detector to // represent data elements and their corresponding values for the event you are // sending for evaluation. EventVariables map[string]string // The timestamp associated with the label to update. The timestamp must be // specified using ISO 8601 standard in UTC. LabelTimestamp *string noSmithyDocumentSerde } // The event orchestration status. type EventOrchestration struct { // Specifies if event orchestration is enabled through Amazon EventBridge. // // This member is required. EventBridgeEnabled *bool noSmithyDocumentSerde } // Information about the summary of an event prediction. type EventPredictionSummary struct { // The detector ID. DetectorId *string // The detector version ID. DetectorVersionId *string // The event ID. EventId *string // The timestamp of the event. EventTimestamp *string // The event type. EventTypeName *string // The timestamp when the prediction was generated. PredictionTimestamp *string noSmithyDocumentSerde } // The event type details. type EventType struct { // The entity type ARN. Arn *string // Timestamp of when the event type was created. CreatedTime *string // The event type description. Description *string // The event type entity types. EntityTypes []string // If Enabled , Amazon Fraud Detector stores event data when you generate a // prediction and uses that data to update calculated variables in near real-time. // Amazon Fraud Detector uses this data, known as INGESTED_EVENTS , to train your // model and improve fraud predictions. EventIngestion EventIngestion // The event orchestration status. EventOrchestration *EventOrchestration // The event type event variables. EventVariables []string // Data about the stored events. IngestedEventStatistics *IngestedEventStatistics // The event type labels. Labels []string // Timestamp of when the event type was last updated. LastUpdatedTime *string // The event type name. Name *string noSmithyDocumentSerde } // Information about the summary of an event variable that was evaluated for // generating prediction. type EventVariableSummary struct { // The event variable name. Name *string // The event variable source. Source *string // The value of the event variable. Value *string noSmithyDocumentSerde } // Details for the external events data used for model version training. type ExternalEventsDetail struct { // The ARN of the role that provides Amazon Fraud Detector access to the data // location. // // This member is required. DataAccessRoleArn *string // The Amazon S3 bucket location for the data. // // This member is required. DataLocation *string noSmithyDocumentSerde } // The Amazon SageMaker model. type ExternalModel struct { // The model ARN. Arn *string // Timestamp of when the model was last created. CreatedTime *string // The input configuration. InputConfiguration *ModelInputConfiguration // The role used to invoke the model. InvokeModelEndpointRoleArn *string // Timestamp of when the model was last updated. LastUpdatedTime *string // The Amazon SageMaker model endpoints. ModelEndpoint *string // The Amazon Fraud Detector status for the external model endpoint ModelEndpointStatus ModelEndpointStatus // The source of the model. ModelSource ModelSource // The output configuration. OutputConfiguration *ModelOutputConfiguration noSmithyDocumentSerde } // The fraud prediction scores from Amazon SageMaker model. type ExternalModelOutputs struct { // The Amazon SageMaker model. ExternalModel *ExternalModelSummary // The fraud prediction scores from Amazon SageMaker model. Outputs map[string]string noSmithyDocumentSerde } // The Amazon SageMaker model. type ExternalModelSummary struct { // The endpoint of the Amazon SageMaker model. ModelEndpoint *string // The source of the model. ModelSource ModelSource noSmithyDocumentSerde } // The message details. type FieldValidationMessage struct { // The message content. Content *string // The field name. FieldName *string // The message ID. Identifier *string // The message title. Title *string // The message type. Type *string noSmithyDocumentSerde } // The message details. type FileValidationMessage struct { // The message content. Content *string // The message title. Title *string // The message type. Type *string noSmithyDocumentSerde } // A conditional statement for filtering a list of past predictions. type FilterCondition struct { // A statement containing a resource property and a value to specify filter // condition. Value *string noSmithyDocumentSerde } // The details of the ingested event. type IngestedEventsDetail struct { // The start and stop time of the ingested events. // // This member is required. IngestedEventsTimeWindow *IngestedEventsTimeWindow noSmithyDocumentSerde } // Data about the stored events. type IngestedEventStatistics struct { // The total size of the stored events. EventDataSizeInBytes *int64 // Timestamp of when the stored event was last updated. LastUpdatedTime *string // The oldest stored event. LeastRecentEvent *string // The newest stored event. MostRecentEvent *string // The number of stored events. NumberOfEvents *int64 noSmithyDocumentSerde } // The start and stop time of the ingested events. type IngestedEventsTimeWindow struct { // Timestamp of the final ingested event. // // This member is required. EndTime *string // Timestamp of the first ingensted event. // // This member is required. StartTime *string noSmithyDocumentSerde } // The KMS key details. type KMSKey struct { // The encryption key ARN. KmsEncryptionKeyArn *string noSmithyDocumentSerde } // The label details. type Label struct { // The label ARN. Arn *string // Timestamp of when the event type was created. CreatedTime *string // The label description. Description *string // Timestamp of when the label was last updated. LastUpdatedTime *string // The label name. Name *string noSmithyDocumentSerde } // The label schema. type LabelSchema struct { // The label mapper maps the Amazon Fraud Detector supported model classification // labels ( FRAUD , LEGIT ) to the appropriate event type labels. For example, if " // FRAUD " and " LEGIT " are Amazon Fraud Detector supported labels, this mapper // could be: {"FRAUD" => ["0"] , "LEGIT" => ["1"]} or {"FRAUD" => ["false"] , // "LEGIT" => ["true"]} or {"FRAUD" => ["fraud", "abuse"] , "LEGIT" => ["legit", // "safe"]} . The value part of the mapper is a list, because you may have multiple // label variants from your event type for a single Amazon Fraud Detector label. LabelMapper map[string][]string // The action to take for unlabeled events. // - Use IGNORE if you want the unlabeled events to be ignored. This is // recommended when the majority of the events in the dataset are labeled. // - Use FRAUD if you want to categorize all unlabeled events as “Fraud”. This is // recommended when most of the events in your dataset are fraudulent. // - Use LEGIT if you want to categorize all unlabeled events as “Legit”. This is // recommended when most of the events in your dataset are legitimate. // - Use AUTO if you want Amazon Fraud Detector to decide how to use the // unlabeled data. This is recommended when there is significant unlabeled events // in the dataset. // By default, Amazon Fraud Detector ignores the unlabeled data. UnlabeledEventsTreatment UnlabeledEventsTreatment noSmithyDocumentSerde } // The log odds metric details. type LogOddsMetric struct { // The relative importance of the variable. For more information, see Model // variable importance (https://docs.aws.amazon.com/frauddetector/latest/ug/model-variable-importance.html) // . // // This member is required. VariableImportance *float32 // The name of the variable. // // This member is required. VariableName *string // The type of variable. // // This member is required. VariableType *string noSmithyDocumentSerde } // Model performance metrics data points. type MetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events that // are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared to // all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 noSmithyDocumentSerde } // The model. type Model struct { // The ARN of the model. Arn *string // Timestamp of when the model was created. CreatedTime *string // The model description. Description *string // The name of the event type. EventTypeName *string // Timestamp of last time the model was updated. LastUpdatedTime *string // The model ID. ModelId *string // The model type. ModelType ModelTypeEnum noSmithyDocumentSerde } // A pre-formed Amazon SageMaker model input you can include if your detector // version includes an imported Amazon SageMaker model endpoint with pass-through // input configuration. type ModelEndpointDataBlob struct { // The byte buffer of the Amazon SageMaker model endpoint input data blob. ByteBuffer []byte // The content type of the Amazon SageMaker model endpoint input data blob. ContentType *string noSmithyDocumentSerde } // The Amazon SageMaker model input configuration. type ModelInputConfiguration struct { // The event variables. // // This member is required. UseEventVariables *bool // Template for constructing the CSV input-data sent to SageMaker. At // event-evaluation, the placeholders for variable-names in the template will be // replaced with the variable values before being sent to SageMaker. CsvInputTemplate *string // The event type name. EventTypeName *string // The format of the model input configuration. The format differs depending on if // it is passed through to SageMaker or constructed by Amazon Fraud Detector. Format ModelInputDataFormat // Template for constructing the JSON input-data sent to SageMaker. At // event-evaluation, the placeholders for variable names in the template will be // replaced with the variable values before being sent to SageMaker. JsonInputTemplate *string noSmithyDocumentSerde } // Provides the Amazon Sagemaker model output configuration. type ModelOutputConfiguration struct { // The format of the model output configuration. // // This member is required. Format ModelOutputDataFormat // A map of CSV index values in the SageMaker response to the Amazon Fraud // Detector variables. CsvIndexToVariableMap map[string]string // A map of JSON keys in response from SageMaker to the Amazon Fraud Detector // variables. JsonKeyToVariableMap map[string]string noSmithyDocumentSerde } // The fraud prediction scores. type ModelScores struct { // The model version. ModelVersion *ModelVersion // The model's fraud prediction scores. Scores map[string]float32 noSmithyDocumentSerde } // The model version. type ModelVersion struct { // The model ID. // // This member is required. ModelId *string // The model type. // // This member is required. ModelType ModelTypeEnum // The model version number. // // This member is required. ModelVersionNumber *string // The model version ARN. Arn *string noSmithyDocumentSerde } // The details of the model version. type ModelVersionDetail struct { // The model version ARN. Arn *string // The timestamp when the model was created. CreatedTime *string // The external events data details. This will be populated if the // trainingDataSource for the model version is specified as EXTERNAL_EVENTS . ExternalEventsDetail *ExternalEventsDetail // The ingested events data details. This will be populated if the // trainingDataSource for the model version is specified as INGESTED_EVENTS . IngestedEventsDetail *IngestedEventsDetail // The timestamp when the model was last updated. LastUpdatedTime *string // The model ID. ModelId *string // The model type. ModelType ModelTypeEnum // The model version number. ModelVersionNumber *string // The status of the model version. Status *string // The training data schema. TrainingDataSchema *TrainingDataSchema // The model version training data source. TrainingDataSource TrainingDataSourceEnum // The training results. TrainingResult *TrainingResult // The training result details. The details include the relative importance of the // variables. TrainingResultV2 *TrainingResultV2 noSmithyDocumentSerde } // The model version evalutions. type ModelVersionEvaluation struct { // The evaluation score generated for the model version. EvaluationScore *string // The output variable name. OutputVariableName *string // The prediction explanations generated for the model version. PredictionExplanations *PredictionExplanations noSmithyDocumentSerde } // The Online Fraud Insights (OFI) model performance metrics data points. type OFIMetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events that // are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared to // all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 noSmithyDocumentSerde } // The Online Fraud Insights (OFI) model performance score. type OFIModelPerformance struct { // The area under the curve (auc). This summarizes the total positive rate (tpr) // and false positive rate (FPR) across all possible model score thresholds. Auc *float32 // Indicates the range of area under curve (auc) expected from the OFI model. A // range greater than 0.1 indicates higher model uncertainity. UncertaintyRange *UncertaintyRange noSmithyDocumentSerde } // The Online Fraud Insights (OFI) model training metric details. type OFITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []OFIMetricDataPoint // The model's overall performance score. ModelPerformance *OFIModelPerformance noSmithyDocumentSerde } // The outcome. type Outcome struct { // The outcome ARN. Arn *string // The timestamp when the outcome was created. CreatedTime *string // The outcome description. Description *string // The timestamp when the outcome was last updated. LastUpdatedTime *string // The outcome name. Name *string noSmithyDocumentSerde } // The prediction explanations that provide insight into how each event variable // impacted the model version's fraud prediction score. type PredictionExplanations struct { // The details of the aggregated variables impact on the prediction score. Account // Takeover Insights (ATI) model uses event variables from the login data you // provide to continuously calculate a set of variables (aggregated variables) // based on historical events. For example, your ATI model might calculate the // number of times an user has logged in using the same IP address. In this case, // event variables used to derive the aggregated variables are IP address and user . AggregatedVariablesImpactExplanations []AggregatedVariablesImpactExplanation // The details of the event variable's impact on the prediction score. VariableImpactExplanations []VariableImpactExplanation noSmithyDocumentSerde } // The time period for when the predictions were generated. type PredictionTimeRange struct { // The end time of the time period for when the predictions were generated. // // This member is required. EndTime *string // The start time of the time period for when the predictions were generated. // // This member is required. StartTime *string noSmithyDocumentSerde } // A rule. type Rule struct { // The detector for which the rule is associated. // // This member is required. DetectorId *string // The rule ID. // // This member is required. RuleId *string // The rule version. // // This member is required. RuleVersion *string noSmithyDocumentSerde } // The details of the rule. type RuleDetail struct { // The rule ARN. Arn *string // The timestamp of when the rule was created. CreatedTime *string // The rule description. Description *string // The detector for which the rule is associated. DetectorId *string // The rule expression. Expression *string // The rule language. Language Language // Timestamp of the last time the rule was updated. LastUpdatedTime *string // The rule outcomes. Outcomes []string // The rule ID. RuleId *string // The rule version. RuleVersion *string noSmithyDocumentSerde } // The rule results. type RuleResult struct { // The outcomes of the matched rule, based on the rule execution mode. Outcomes []string // The rule ID that was matched, based on the rule execution mode. RuleId *string noSmithyDocumentSerde } // A key and value pair. type Tag struct { // A tag key. // // This member is required. Key *string // A value assigned to a tag key. // // This member is required. Value *string noSmithyDocumentSerde } // The performance metrics data points for Transaction Fraud Insights (TFI) model. type TFIMetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events that // are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared to // all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 noSmithyDocumentSerde } // The Transaction Fraud Insights (TFI) model performance score. type TFIModelPerformance struct { // The area under the curve (auc). This summarizes the total positive rate (tpr) // and false positive rate (FPR) across all possible model score thresholds. Auc *float32 // Indicates the range of area under curve (auc) expected from the TFI model. A // range greater than 0.1 indicates higher model uncertainity. UncertaintyRange *UncertaintyRange noSmithyDocumentSerde } // The Transaction Fraud Insights (TFI) model training metric details. type TFITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []TFIMetricDataPoint // The model performance score. ModelPerformance *TFIModelPerformance noSmithyDocumentSerde } // The training data schema. type TrainingDataSchema struct { // The training data schema variables. // // This member is required. ModelVariables []string // The label schema. LabelSchema *LabelSchema noSmithyDocumentSerde } // The training metric details. type TrainingMetrics struct { // The area under the curve. This summarizes true positive rate (TPR) and false // positive rate (FPR) across all possible model score thresholds. A model with no // predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0. Auc *float32 // The data points details. MetricDataPoints []MetricDataPoint noSmithyDocumentSerde } // The training metrics details. type TrainingMetricsV2 struct { // The Account Takeover Insights (ATI) model training metric details. Ati *ATITrainingMetricsValue // The Online Fraud Insights (OFI) model training metric details. Ofi *OFITrainingMetricsValue // The Transaction Fraud Insights (TFI) model training metric details. Tfi *TFITrainingMetricsValue noSmithyDocumentSerde } // The training result details. type TrainingResult struct { // The validation metrics. DataValidationMetrics *DataValidationMetrics // The training metric details. TrainingMetrics *TrainingMetrics // The variable importance metrics. VariableImportanceMetrics *VariableImportanceMetrics noSmithyDocumentSerde } // The training result details. type TrainingResultV2 struct { // The variable importance metrics of the aggregated variables. Account Takeover // Insights (ATI) model uses event variables from the login data you provide to // continuously calculate a set of variables (aggregated variables) based on // historical events. For example, your ATI model might calculate the number of // times an user has logged in using the same IP address. In this case, event // variables used to derive the aggregated variables are IP address and user . AggregatedVariablesImportanceMetrics *AggregatedVariablesImportanceMetrics // The model training data validation metrics. DataValidationMetrics *DataValidationMetrics // The training metric details. TrainingMetricsV2 *TrainingMetricsV2 // The variable importance metrics details. VariableImportanceMetrics *VariableImportanceMetrics noSmithyDocumentSerde } // Range of area under curve (auc) expected from the model. A range greater than // 0.1 indicates higher model uncertainity. A range is the difference between upper // and lower bound of auc. type UncertaintyRange struct { // The lower bound value of the area under curve (auc). // // This member is required. LowerBoundValue *float32 // The upper bound value of the area under curve (auc). // // This member is required. UpperBoundValue *float32 noSmithyDocumentSerde } // The variable. type Variable struct { // The ARN of the variable. Arn *string // The time when the variable was created. CreatedTime *string // The data source of the variable. DataSource DataSource // The data type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types) // . DataType DataType // The default value of the variable. DefaultValue *string // The description of the variable. Description *string // The time when variable was last updated. LastUpdatedTime *string // The name of the variable. Name *string // The variable type of the variable. Valid Values: AUTH_CODE | AVS | // BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | BILLING_CITY | BILLING_COUNTRY | // BILLING_NAME | BILLING_PHONE | BILLING_STATE | BILLING_ZIP | CARD_BIN | // CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | FINGERPRINT | FRAUD_LABEL | // FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | PAYMENT_TYPE | PHONE_NUMBER | // PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | SHIPPING_ADDRESS_L2 | // SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | SHIPPING_PHONE | // SHIPPING_STATE | SHIPPING_ZIP | USERAGENT VariableType *string noSmithyDocumentSerde } // A variable in the list of variables for the batch create variable request. type VariableEntry struct { // The data source of the variable. DataSource *string // The data type of the variable. DataType *string // The default value of the variable. DefaultValue *string // The description of the variable. Description *string // The name of the variable. Name *string // The type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types) // . Valid Values: AUTH_CODE | AVS | BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | // BILLING_CITY | BILLING_COUNTRY | BILLING_NAME | BILLING_PHONE | BILLING_STATE | // BILLING_ZIP | CARD_BIN | CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | // FINGERPRINT | FRAUD_LABEL | FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | // PAYMENT_TYPE | PHONE_NUMBER | PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | // SHIPPING_ADDRESS_L2 | SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | // SHIPPING_PHONE | SHIPPING_STATE | SHIPPING_ZIP | USERAGENT VariableType *string noSmithyDocumentSerde } // The details of the event variable's impact on the prediction score. type VariableImpactExplanation struct { // The event variable name. EventVariableName *string // The raw, uninterpreted value represented as log-odds of the fraud. These values // are usually between -10 to +10, but range from - infinity to + infinity. // - A positive value indicates that the variable drove the risk score up. // - A negative value indicates that the variable drove the risk score down. LogOddsImpact *float32 // The event variable's relative impact in terms of magnitude on the prediction // scores. The relative impact values consist of a numerical rating (0-5, 5 being // the highest) and direction (increased/decreased) impact of the fraud risk. RelativeImpact *string noSmithyDocumentSerde } // The variable importance metrics details. type VariableImportanceMetrics struct { // List of variable metrics. LogOddsMetrics []LogOddsMetric noSmithyDocumentSerde } type noSmithyDocumentSerde = smithydocument.NoSerde