// Code generated by smithy-go-codegen DO NOT EDIT. package machinelearning import ( "context" awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware" "github.com/aws/aws-sdk-go-v2/aws/signer/v4" "github.com/aws/smithy-go/middleware" smithyhttp "github.com/aws/smithy-go/transport/http" ) // Creates a new Evaluation of an MLModel . An MLModel is evaluated on a set of // observations associated to a DataSource . Like a DataSource for an MLModel , the // DataSource for an Evaluation contains values for the Target Variable . The // Evaluation compares the predicted result for each observation to the actual // outcome and provides a summary so that you know how effective the MLModel // functions on the test data. Evaluation generates a relevant performance metric, // such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the // corresponding MLModelType : BINARY , REGRESSION or MULTICLASS . CreateEvaluation // is an asynchronous operation. In response to CreateEvaluation , Amazon Machine // Learning (Amazon ML) immediately returns and sets the evaluation status to // PENDING . After the Evaluation is created and ready for use, Amazon ML sets the // status to COMPLETED . You can use the GetEvaluation operation to check progress // of the evaluation during the creation operation. func (c *Client) CreateEvaluation(ctx context.Context, params *CreateEvaluationInput, optFns ...func(*Options)) (*CreateEvaluationOutput, error) { if params == nil { params = &CreateEvaluationInput{} } result, metadata, err := c.invokeOperation(ctx, "CreateEvaluation", params, optFns, c.addOperationCreateEvaluationMiddlewares) if err != nil { return nil, err } out := result.(*CreateEvaluationOutput) out.ResultMetadata = metadata return out, nil } type CreateEvaluationInput struct { // The ID of the DataSource for the evaluation. The schema of the DataSource must // match the schema used to create the MLModel . // // This member is required. EvaluationDataSourceId *string // A user-supplied ID that uniquely identifies the Evaluation . // // This member is required. EvaluationId *string // The ID of the MLModel to evaluate. The schema used in creating the MLModel must // match the schema of the DataSource used in the Evaluation . // // This member is required. MLModelId *string // A user-supplied name or description of the Evaluation . EvaluationName *string noSmithyDocumentSerde } // Represents the output of a CreateEvaluation operation, and is an // acknowledgement that Amazon ML received the request. CreateEvaluation operation // is asynchronous. You can poll for status updates by using the GetEvcaluation // operation and checking the Status parameter. type CreateEvaluationOutput struct { // The user-supplied ID that uniquely identifies the Evaluation . This value should // be identical to the value of the EvaluationId in the request. EvaluationId *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata noSmithyDocumentSerde } func (c *Client) addOperationCreateEvaluationMiddlewares(stack *middleware.Stack, options Options) (err error) { err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateEvaluation{}, middleware.After) if err != nil { return err } err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateEvaluation{}, middleware.After) if err != nil { return err } if err = addSetLoggerMiddleware(stack, options); err != nil { return err } if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil { return err } if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil { return err } if err = addResolveEndpointMiddleware(stack, options); err != nil { return err } if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil { return err } if err = addRetryMiddlewares(stack, options); err != nil { return err } if err = addHTTPSignerV4Middleware(stack, options); err != nil { return err } if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil { return err } if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil { return err } if err = addClientUserAgent(stack, options); err != nil { return err } if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil { return err } if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil { return err } if err = addOpCreateEvaluationValidationMiddleware(stack); err != nil { return err } if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateEvaluation(options.Region), middleware.Before); err != nil { return err } if err = awsmiddleware.AddRecursionDetection(stack); err != nil { return err } if err = addRequestIDRetrieverMiddleware(stack); err != nil { return err } if err = addResponseErrorMiddleware(stack); err != nil { return err } if err = addRequestResponseLogging(stack, options); err != nil { return err } return nil } func newServiceMetadataMiddleware_opCreateEvaluation(region string) *awsmiddleware.RegisterServiceMetadata { return &awsmiddleware.RegisterServiceMetadata{ Region: region, ServiceID: ServiceID, SigningName: "machinelearning", OperationName: "CreateEvaluation", } }