// Code generated by smithy-go-codegen DO NOT EDIT. package machinelearning import ( "context" "fmt" awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware" "github.com/aws/aws-sdk-go-v2/aws/signer/v4" "github.com/aws/aws-sdk-go-v2/service/machinelearning/types" "github.com/aws/smithy-go/middleware" smithytime "github.com/aws/smithy-go/time" smithyhttp "github.com/aws/smithy-go/transport/http" smithywaiter "github.com/aws/smithy-go/waiter" "github.com/jmespath/go-jmespath" "time" ) // Returns a list of MLModel that match the search criteria in the request. func (c *Client) DescribeMLModels(ctx context.Context, params *DescribeMLModelsInput, optFns ...func(*Options)) (*DescribeMLModelsOutput, error) { if params == nil { params = &DescribeMLModelsInput{} } result, metadata, err := c.invokeOperation(ctx, "DescribeMLModels", params, optFns, c.addOperationDescribeMLModelsMiddlewares) if err != nil { return nil, err } out := result.(*DescribeMLModelsOutput) out.ResultMetadata = metadata return out, nil } type DescribeMLModelsInput struct { // The equal to operator. The MLModel results will have FilterVariable values that // exactly match the value specified with EQ . EQ *string // Use one of the following variables to filter a list of MLModel : // - CreatedAt - Sets the search criteria to MLModel creation date. // - Status - Sets the search criteria to MLModel status. // - Name - Sets the search criteria to the contents of MLModel Name . // - IAMUser - Sets the search criteria to the user account that invoked the // MLModel creation. // - TrainingDataSourceId - Sets the search criteria to the DataSource used to // train one or more MLModel . // - RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time // endpoint status. // - MLModelType - Sets the search criteria to MLModel type: binary, regression, // or multi-class. // - Algorithm - Sets the search criteria to the algorithm that the MLModel uses. // - TrainingDataURI - Sets the search criteria to the data file(s) used in // training a MLModel . The URL can identify either a file or an Amazon Simple // Storage Service (Amazon S3) bucket or directory. FilterVariable types.MLModelFilterVariable // The greater than or equal to operator. The MLModel results will have // FilterVariable values that are greater than or equal to the value specified with // GE . GE *string // The greater than operator. The MLModel results will have FilterVariable values // that are greater than the value specified with GT . GT *string // The less than or equal to operator. The MLModel results will have FilterVariable // values that are less than or equal to the value specified with LE . LE *string // The less than operator. The MLModel results will have FilterVariable values // that are less than the value specified with LT . LT *string // The number of pages of information to include in the result. The range of // acceptable values is 1 through 100 . The default value is 100 . Limit *int32 // The not equal to operator. The MLModel results will have FilterVariable values // not equal to the value specified with NE . NE *string // The ID of the page in the paginated results. NextToken *string // A string that is found at the beginning of a variable, such as Name or Id . For // example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer . To search // for this MLModel , select Name for the FilterVariable and any of the following // strings for the Prefix : // - 2014-09 // - 2014-09-09 // - 2014-09-09-Holiday Prefix *string // A two-value parameter that determines the sequence of the resulting list of // MLModel . // - asc - Arranges the list in ascending order (A-Z, 0-9). // - dsc - Arranges the list in descending order (Z-A, 9-0). // Results are sorted by FilterVariable . SortOrder types.SortOrder noSmithyDocumentSerde } // Represents the output of a DescribeMLModels operation. The content is // essentially a list of MLModel . type DescribeMLModelsOutput struct { // The ID of the next page in the paginated results that indicates at least one // more page follows. NextToken *string // A list of MLModel that meet the search criteria. Results []types.MLModel // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata noSmithyDocumentSerde } func (c *Client) addOperationDescribeMLModelsMiddlewares(stack *middleware.Stack, options Options) (err error) { err = stack.Serialize.Add(&awsAwsjson11_serializeOpDescribeMLModels{}, middleware.After) if err != nil { return err } err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpDescribeMLModels{}, middleware.After) if err != nil { return err } if err = addSetLoggerMiddleware(stack, options); err != nil { return err } if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil { return err } if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil { return err } if err = addResolveEndpointMiddleware(stack, options); err != nil { return err } if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil { return err } if err = addRetryMiddlewares(stack, options); err != nil { return err } if err = addHTTPSignerV4Middleware(stack, options); err != nil { return err } if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil { return err } if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil { return err } if err = addClientUserAgent(stack, options); err != nil { return err } if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil { return err } if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil { return err } if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDescribeMLModels(options.Region), middleware.Before); err != nil { return err } if err = awsmiddleware.AddRecursionDetection(stack); err != nil { return err } if err = addRequestIDRetrieverMiddleware(stack); err != nil { return err } if err = addResponseErrorMiddleware(stack); err != nil { return err } if err = addRequestResponseLogging(stack, options); err != nil { return err } return nil } // DescribeMLModelsAPIClient is a client that implements the DescribeMLModels // operation. type DescribeMLModelsAPIClient interface { DescribeMLModels(context.Context, *DescribeMLModelsInput, ...func(*Options)) (*DescribeMLModelsOutput, error) } var _ DescribeMLModelsAPIClient = (*Client)(nil) // DescribeMLModelsPaginatorOptions is the paginator options for DescribeMLModels type DescribeMLModelsPaginatorOptions struct { // The number of pages of information to include in the result. The range of // acceptable values is 1 through 100 . The default value is 100 . Limit int32 // Set to true if pagination should stop if the service returns a pagination token // that matches the most recent token provided to the service. StopOnDuplicateToken bool } // DescribeMLModelsPaginator is a paginator for DescribeMLModels type DescribeMLModelsPaginator struct { options DescribeMLModelsPaginatorOptions client DescribeMLModelsAPIClient params *DescribeMLModelsInput nextToken *string firstPage bool } // NewDescribeMLModelsPaginator returns a new DescribeMLModelsPaginator func NewDescribeMLModelsPaginator(client DescribeMLModelsAPIClient, params *DescribeMLModelsInput, optFns ...func(*DescribeMLModelsPaginatorOptions)) *DescribeMLModelsPaginator { if params == nil { params = &DescribeMLModelsInput{} } options := DescribeMLModelsPaginatorOptions{} if params.Limit != nil { options.Limit = *params.Limit } for _, fn := range optFns { fn(&options) } return &DescribeMLModelsPaginator{ options: options, client: client, params: params, firstPage: true, nextToken: params.NextToken, } } // HasMorePages returns a boolean indicating whether more pages are available func (p *DescribeMLModelsPaginator) HasMorePages() bool { return p.firstPage || (p.nextToken != nil && len(*p.nextToken) != 0) } // NextPage retrieves the next DescribeMLModels page. func (p *DescribeMLModelsPaginator) NextPage(ctx context.Context, optFns ...func(*Options)) (*DescribeMLModelsOutput, error) { if !p.HasMorePages() { return nil, fmt.Errorf("no more pages available") } params := *p.params params.NextToken = p.nextToken var limit *int32 if p.options.Limit > 0 { limit = &p.options.Limit } params.Limit = limit result, err := p.client.DescribeMLModels(ctx, ¶ms, optFns...) if err != nil { return nil, err } p.firstPage = false prevToken := p.nextToken p.nextToken = result.NextToken if p.options.StopOnDuplicateToken && prevToken != nil && p.nextToken != nil && *prevToken == *p.nextToken { p.nextToken = nil } return result, nil } // MLModelAvailableWaiterOptions are waiter options for MLModelAvailableWaiter type MLModelAvailableWaiterOptions struct { // Set of options to modify how an operation is invoked. These apply to all // operations invoked for this client. Use functional options on operation call to // modify this list for per operation behavior. APIOptions []func(*middleware.Stack) error // MinDelay is the minimum amount of time to delay between retries. If unset, // MLModelAvailableWaiter will use default minimum delay of 30 seconds. Note that // MinDelay must resolve to a value lesser than or equal to the MaxDelay. MinDelay time.Duration // MaxDelay is the maximum amount of time to delay between retries. If unset or // set to zero, MLModelAvailableWaiter will use default max delay of 120 seconds. // Note that MaxDelay must resolve to value greater than or equal to the MinDelay. MaxDelay time.Duration // LogWaitAttempts is used to enable logging for waiter retry attempts LogWaitAttempts bool // Retryable is function that can be used to override the service defined // waiter-behavior based on operation output, or returned error. This function is // used by the waiter to decide if a state is retryable or a terminal state. By // default service-modeled logic will populate this option. This option can thus be // used to define a custom waiter state with fall-back to service-modeled waiter // state mutators.The function returns an error in case of a failure state. In case // of retry state, this function returns a bool value of true and nil error, while // in case of success it returns a bool value of false and nil error. Retryable func(context.Context, *DescribeMLModelsInput, *DescribeMLModelsOutput, error) (bool, error) } // MLModelAvailableWaiter defines the waiters for MLModelAvailable type MLModelAvailableWaiter struct { client DescribeMLModelsAPIClient options MLModelAvailableWaiterOptions } // NewMLModelAvailableWaiter constructs a MLModelAvailableWaiter. func NewMLModelAvailableWaiter(client DescribeMLModelsAPIClient, optFns ...func(*MLModelAvailableWaiterOptions)) *MLModelAvailableWaiter { options := MLModelAvailableWaiterOptions{} options.MinDelay = 30 * time.Second options.MaxDelay = 120 * time.Second options.Retryable = mLModelAvailableStateRetryable for _, fn := range optFns { fn(&options) } return &MLModelAvailableWaiter{ client: client, options: options, } } // Wait calls the waiter function for MLModelAvailable waiter. The maxWaitDur is // the maximum wait duration the waiter will wait. The maxWaitDur is required and // must be greater than zero. func (w *MLModelAvailableWaiter) Wait(ctx context.Context, params *DescribeMLModelsInput, maxWaitDur time.Duration, optFns ...func(*MLModelAvailableWaiterOptions)) error { _, err := w.WaitForOutput(ctx, params, maxWaitDur, optFns...) return err } // WaitForOutput calls the waiter function for MLModelAvailable waiter and returns // the output of the successful operation. The maxWaitDur is the maximum wait // duration the waiter will wait. The maxWaitDur is required and must be greater // than zero. func (w *MLModelAvailableWaiter) WaitForOutput(ctx context.Context, params *DescribeMLModelsInput, maxWaitDur time.Duration, optFns ...func(*MLModelAvailableWaiterOptions)) (*DescribeMLModelsOutput, error) { if maxWaitDur <= 0 { return nil, fmt.Errorf("maximum wait time for waiter must be greater than zero") } options := w.options for _, fn := range optFns { fn(&options) } if options.MaxDelay <= 0 { options.MaxDelay = 120 * time.Second } if options.MinDelay > options.MaxDelay { return nil, fmt.Errorf("minimum waiter delay %v must be lesser than or equal to maximum waiter delay of %v.", options.MinDelay, options.MaxDelay) } ctx, cancelFn := context.WithTimeout(ctx, maxWaitDur) defer cancelFn() logger := smithywaiter.Logger{} remainingTime := maxWaitDur var attempt int64 for { attempt++ apiOptions := options.APIOptions start := time.Now() if options.LogWaitAttempts { logger.Attempt = attempt apiOptions = append([]func(*middleware.Stack) error{}, options.APIOptions...) apiOptions = append(apiOptions, logger.AddLogger) } out, err := w.client.DescribeMLModels(ctx, params, func(o *Options) { o.APIOptions = append(o.APIOptions, apiOptions...) }) retryable, err := options.Retryable(ctx, params, out, err) if err != nil { return nil, err } if !retryable { return out, nil } remainingTime -= time.Since(start) if remainingTime < options.MinDelay || remainingTime <= 0 { break } // compute exponential backoff between waiter retries delay, err := smithywaiter.ComputeDelay( attempt, options.MinDelay, options.MaxDelay, remainingTime, ) if err != nil { return nil, fmt.Errorf("error computing waiter delay, %w", err) } remainingTime -= delay // sleep for the delay amount before invoking a request if err := smithytime.SleepWithContext(ctx, delay); err != nil { return nil, fmt.Errorf("request cancelled while waiting, %w", err) } } return nil, fmt.Errorf("exceeded max wait time for MLModelAvailable waiter") } func mLModelAvailableStateRetryable(ctx context.Context, input *DescribeMLModelsInput, output *DescribeMLModelsOutput, err error) (bool, error) { if err == nil { pathValue, err := jmespath.Search("Results[].Status", output) if err != nil { return false, fmt.Errorf("error evaluating waiter state: %w", err) } expectedValue := "COMPLETED" var match = true listOfValues, ok := pathValue.([]interface{}) if !ok { return false, fmt.Errorf("waiter comparator expected list got %T", pathValue) } if len(listOfValues) == 0 { match = false } for _, v := range listOfValues { value, ok := v.(types.EntityStatus) if !ok { return false, fmt.Errorf("waiter comparator expected types.EntityStatus value, got %T", pathValue) } if string(value) != expectedValue { match = false } } if match { return false, nil } } if err == nil { pathValue, err := jmespath.Search("Results[].Status", output) if err != nil { return false, fmt.Errorf("error evaluating waiter state: %w", err) } expectedValue := "FAILED" listOfValues, ok := pathValue.([]interface{}) if !ok { return false, fmt.Errorf("waiter comparator expected list got %T", pathValue) } for _, v := range listOfValues { value, ok := v.(types.EntityStatus) if !ok { return false, fmt.Errorf("waiter comparator expected types.EntityStatus value, got %T", pathValue) } if string(value) == expectedValue { return false, fmt.Errorf("waiter state transitioned to Failure") } } } return true, nil } func newServiceMetadataMiddleware_opDescribeMLModels(region string) *awsmiddleware.RegisterServiceMetadata { return &awsmiddleware.RegisterServiceMetadata{ Region: region, ServiceID: ServiceID, SigningName: "machinelearning", OperationName: "DescribeMLModels", } }