// Code generated by smithy-go-codegen DO NOT EDIT. package machinelearning import ( "context" awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware" "github.com/aws/aws-sdk-go-v2/aws/signer/v4" "github.com/aws/aws-sdk-go-v2/service/machinelearning/types" "github.com/aws/smithy-go/middleware" smithyhttp "github.com/aws/smithy-go/transport/http" "time" ) // Returns an MLModel that includes detailed metadata, data source information, // and the current status of the MLModel . GetMLModel provides results in normal // or verbose format. func (c *Client) GetMLModel(ctx context.Context, params *GetMLModelInput, optFns ...func(*Options)) (*GetMLModelOutput, error) { if params == nil { params = &GetMLModelInput{} } result, metadata, err := c.invokeOperation(ctx, "GetMLModel", params, optFns, c.addOperationGetMLModelMiddlewares) if err != nil { return nil, err } out := result.(*GetMLModelOutput) out.ResultMetadata = metadata return out, nil } type GetMLModelInput struct { // The ID assigned to the MLModel at creation. // // This member is required. MLModelId *string // Specifies whether the GetMLModel operation should return Recipe . If true, // Recipe is returned. If false, Recipe is not returned. Verbose bool noSmithyDocumentSerde } // Represents the output of a GetMLModel operation, and provides detailed // information about a MLModel . type GetMLModelOutput struct { // The approximate CPU time in milliseconds that Amazon Machine Learning spent // processing the MLModel , normalized and scaled on computation resources. // ComputeTime is only available if the MLModel is in the COMPLETED state. ComputeTime *int64 // The time that the MLModel was created. The time is expressed in epoch time. CreatedAt *time.Time // The AWS user account from which the MLModel was created. The account type can // be either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string // The current endpoint of the MLModel EndpointInfo *types.RealtimeEndpointInfo // The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED or // FAILED . FinishedAt is only available when the MLModel is in the COMPLETED or // FAILED state. FinishedAt *time.Time // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string // The time of the most recent edit to the MLModel . The time is expressed in epoch // time. LastUpdatedAt *time.Time // A link to the file that contains logs of the CreateMLModel operation. LogUri *string // The MLModel ID, which is same as the MLModelId in the request. MLModelId *string // Identifies the MLModel category. The following are the available types: // - REGRESSION -- Produces a numeric result. For example, "What price should a // house be listed at?" // - BINARY -- Produces one of two possible results. For example, "Is this an // e-commerce website?" // - MULTICLASS -- Produces one of several possible results. For example, "Is // this a HIGH, LOW or MEDIUM risk trade?" MLModelType types.MLModelType // A description of the most recent details about accessing the MLModel . Message *string // A user-supplied name or description of the MLModel . Name *string // The recipe to use when training the MLModel . The Recipe provides detailed // information about the observation data to use during training, and manipulations // to perform on the observation data during training. Note: This parameter is // provided as part of the verbose format. Recipe *string // The schema used by all of the data files referenced by the DataSource . Note: // This parameter is provided as part of the verbose format. Schema *string // The scoring threshold is used in binary classification MLModel models. It marks // the boundary between a positive prediction and a negative prediction. Output // values greater than or equal to the threshold receive a positive result from the // MLModel, such as true . Output values less than the threshold receive a negative // response from the MLModel, such as false . ScoreThreshold *float32 // The time of the most recent edit to the ScoreThreshold . The time is expressed // in epoch time. ScoreThresholdLastUpdatedAt *time.Time // Long integer type that is a 64-bit signed number. SizeInBytes *int64 // The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS . // StartedAt isn't available if the MLModel is in the PENDING state. StartedAt *time.Time // The current status of the MLModel . This element can have one of the following // values: // - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // describe a MLModel . // - INPROGRESS - The request is processing. // - FAILED - The request did not run to completion. The ML model isn't usable. // - COMPLETED - The request completed successfully. // - DELETED - The MLModel is marked as deleted. It isn't usable. Status types.EntityStatus // The ID of the training DataSource . TrainingDataSourceId *string // A list of the training parameters in the MLModel . The list is implemented as a // map of key-value pairs. The following is the current set of training parameters: // // - sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending // on the input data, the size of the model might affect its performance. The value // is an integer that ranges from 100000 to 2147483648 . The default value is // 33554432 . // - sgd.maxPasses - The number of times that the training process traverses the // observations to build the MLModel . The value is an integer that ranges from 1 // to 10000 . The default value is 10 . // - sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling // data improves a model's ability to find the optimal solution for a variety of // data types. The valid values are auto and none . The default value is none . // We strongly recommend that you shuffle your data. // - sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It // controls overfitting the data by penalizing large coefficients. This tends to // drive coefficients to zero, resulting in a sparse feature set. If you use this // parameter, start by specifying a small value, such as 1.0E-08 . The value is a // double that ranges from 0 to MAX_DOUBLE . The default is to not use L1 // normalization. This parameter can't be used when L2 is specified. Use this // parameter sparingly. // - sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It // controls overfitting the data by penalizing large coefficients. This tends to // drive coefficients to small, nonzero values. If you use this parameter, start by // specifying a small value, such as 1.0E-08 . The value is a double that ranges // from 0 to MAX_DOUBLE . The default is to not use L2 normalization. This // parameter can't be used when L1 is specified. Use this parameter sparingly. TrainingParameters map[string]string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata noSmithyDocumentSerde } func (c *Client) addOperationGetMLModelMiddlewares(stack *middleware.Stack, options Options) (err error) { err = stack.Serialize.Add(&awsAwsjson11_serializeOpGetMLModel{}, middleware.After) if err != nil { return err } err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpGetMLModel{}, middleware.After) if err != nil { return err } if err = addSetLoggerMiddleware(stack, options); err != nil { return err } if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil { return err } if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil { return err } if err = addResolveEndpointMiddleware(stack, options); err != nil { return err } if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil { return err } if err = addRetryMiddlewares(stack, options); err != nil { return err } if err = addHTTPSignerV4Middleware(stack, options); err != nil { return err } if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil { return err } if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil { return err } if err = addClientUserAgent(stack, options); err != nil { return err } if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil { return err } if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil { return err } if err = addOpGetMLModelValidationMiddleware(stack); err != nil { return err } if err = stack.Initialize.Add(newServiceMetadataMiddleware_opGetMLModel(options.Region), middleware.Before); err != nil { return err } if err = awsmiddleware.AddRecursionDetection(stack); err != nil { return err } if err = addRequestIDRetrieverMiddleware(stack); err != nil { return err } if err = addResponseErrorMiddleware(stack); err != nil { return err } if err = addRequestResponseLogging(stack, options); err != nil { return err } return nil } func newServiceMetadataMiddleware_opGetMLModel(region string) *awsmiddleware.RegisterServiceMetadata { return &awsmiddleware.RegisterServiceMetadata{ Region: region, ServiceID: ServiceID, SigningName: "machinelearning", OperationName: "GetMLModel", } }