/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.lookoutequipment.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.AmazonWebServiceRequest; /** * * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class CreateModelRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable { /** *
* The name for the ML model to be created. *
*/ private String modelName; /** ** The name of the dataset for the ML model being created. *
*/ private String datasetName; /** ** The data schema for the ML model being created. *
*/ private DatasetSchema datasetSchema; /** ** The input configuration for the labels being used for the ML model that's being created. *
*/ private LabelsInputConfiguration labelsInputConfiguration; /** ** A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *
*/ private String clientToken; /** ** Indicates the time reference in the dataset that should be used to begin the subset of training data for the ML * model. *
*/ private java.util.Date trainingDataStartTime; /** ** Indicates the time reference in the dataset that should be used to end the subset of training data for the ML * model. *
*/ private java.util.Date trainingDataEndTime; /** ** Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the ML * model. *
*/ private java.util.Date evaluationDataStartTime; /** ** Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the ML * model. *
*/ private java.util.Date evaluationDataEndTime; /** ** The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the ML * model. *
*/ private String roleArn; /** *
* The configuration is the TargetSamplingRate
, which is the sampling rate of the data after post
* processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected at a 1
* second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the rate you
* want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is PT15M, and
* the value for a 1 hour rate is PT1H
*
* Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. *
*/ private String serverSideKmsKeyId; /** ** Any tags associated with the ML model being created. *
*/ private java.util.List* Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, Lookout * for Equipment will not use data from this asset for training, evaluation, or inference. *
*/ private String offCondition; /** ** The name for the ML model to be created. *
* * @param modelName * The name for the ML model to be created. */ public void setModelName(String modelName) { this.modelName = modelName; } /** ** The name for the ML model to be created. *
* * @return The name for the ML model to be created. */ public String getModelName() { return this.modelName; } /** ** The name for the ML model to be created. *
* * @param modelName * The name for the ML model to be created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withModelName(String modelName) { setModelName(modelName); return this; } /** ** The name of the dataset for the ML model being created. *
* * @param datasetName * The name of the dataset for the ML model being created. */ public void setDatasetName(String datasetName) { this.datasetName = datasetName; } /** ** The name of the dataset for the ML model being created. *
* * @return The name of the dataset for the ML model being created. */ public String getDatasetName() { return this.datasetName; } /** ** The name of the dataset for the ML model being created. *
* * @param datasetName * The name of the dataset for the ML model being created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withDatasetName(String datasetName) { setDatasetName(datasetName); return this; } /** ** The data schema for the ML model being created. *
* * @param datasetSchema * The data schema for the ML model being created. */ public void setDatasetSchema(DatasetSchema datasetSchema) { this.datasetSchema = datasetSchema; } /** ** The data schema for the ML model being created. *
* * @return The data schema for the ML model being created. */ public DatasetSchema getDatasetSchema() { return this.datasetSchema; } /** ** The data schema for the ML model being created. *
* * @param datasetSchema * The data schema for the ML model being created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withDatasetSchema(DatasetSchema datasetSchema) { setDatasetSchema(datasetSchema); return this; } /** ** The input configuration for the labels being used for the ML model that's being created. *
* * @param labelsInputConfiguration * The input configuration for the labels being used for the ML model that's being created. */ public void setLabelsInputConfiguration(LabelsInputConfiguration labelsInputConfiguration) { this.labelsInputConfiguration = labelsInputConfiguration; } /** ** The input configuration for the labels being used for the ML model that's being created. *
* * @return The input configuration for the labels being used for the ML model that's being created. */ public LabelsInputConfiguration getLabelsInputConfiguration() { return this.labelsInputConfiguration; } /** ** The input configuration for the labels being used for the ML model that's being created. *
* * @param labelsInputConfiguration * The input configuration for the labels being used for the ML model that's being created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withLabelsInputConfiguration(LabelsInputConfiguration labelsInputConfiguration) { setLabelsInputConfiguration(labelsInputConfiguration); return this; } /** ** A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *
* * @param clientToken * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. */ public void setClientToken(String clientToken) { this.clientToken = clientToken; } /** ** A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *
* * @return A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. */ public String getClientToken() { return this.clientToken; } /** ** A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *
* * @param clientToken * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withClientToken(String clientToken) { setClientToken(clientToken); return this; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of training data for the ML * model. *
* * @param trainingDataStartTime * Indicates the time reference in the dataset that should be used to begin the subset of training data for * the ML model. */ public void setTrainingDataStartTime(java.util.Date trainingDataStartTime) { this.trainingDataStartTime = trainingDataStartTime; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of training data for the ML * model. *
* * @return Indicates the time reference in the dataset that should be used to begin the subset of training data for * the ML model. */ public java.util.Date getTrainingDataStartTime() { return this.trainingDataStartTime; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of training data for the ML * model. *
* * @param trainingDataStartTime * Indicates the time reference in the dataset that should be used to begin the subset of training data for * the ML model. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withTrainingDataStartTime(java.util.Date trainingDataStartTime) { setTrainingDataStartTime(trainingDataStartTime); return this; } /** ** Indicates the time reference in the dataset that should be used to end the subset of training data for the ML * model. *
* * @param trainingDataEndTime * Indicates the time reference in the dataset that should be used to end the subset of training data for the * ML model. */ public void setTrainingDataEndTime(java.util.Date trainingDataEndTime) { this.trainingDataEndTime = trainingDataEndTime; } /** ** Indicates the time reference in the dataset that should be used to end the subset of training data for the ML * model. *
* * @return Indicates the time reference in the dataset that should be used to end the subset of training data for * the ML model. */ public java.util.Date getTrainingDataEndTime() { return this.trainingDataEndTime; } /** ** Indicates the time reference in the dataset that should be used to end the subset of training data for the ML * model. *
* * @param trainingDataEndTime * Indicates the time reference in the dataset that should be used to end the subset of training data for the * ML model. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withTrainingDataEndTime(java.util.Date trainingDataEndTime) { setTrainingDataEndTime(trainingDataEndTime); return this; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the ML * model. *
* * @param evaluationDataStartTime * Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for * the ML model. */ public void setEvaluationDataStartTime(java.util.Date evaluationDataStartTime) { this.evaluationDataStartTime = evaluationDataStartTime; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the ML * model. *
* * @return Indicates the time reference in the dataset that should be used to begin the subset of evaluation data * for the ML model. */ public java.util.Date getEvaluationDataStartTime() { return this.evaluationDataStartTime; } /** ** Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the ML * model. *
* * @param evaluationDataStartTime * Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for * the ML model. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withEvaluationDataStartTime(java.util.Date evaluationDataStartTime) { setEvaluationDataStartTime(evaluationDataStartTime); return this; } /** ** Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the ML * model. *
* * @param evaluationDataEndTime * Indicates the time reference in the dataset that should be used to end the subset of evaluation data for * the ML model. */ public void setEvaluationDataEndTime(java.util.Date evaluationDataEndTime) { this.evaluationDataEndTime = evaluationDataEndTime; } /** ** Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the ML * model. *
* * @return Indicates the time reference in the dataset that should be used to end the subset of evaluation data for * the ML model. */ public java.util.Date getEvaluationDataEndTime() { return this.evaluationDataEndTime; } /** ** Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the ML * model. *
* * @param evaluationDataEndTime * Indicates the time reference in the dataset that should be used to end the subset of evaluation data for * the ML model. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withEvaluationDataEndTime(java.util.Date evaluationDataEndTime) { setEvaluationDataEndTime(evaluationDataEndTime); return this; } /** ** The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the ML * model. *
* * @param roleArn * The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create * the ML model. */ public void setRoleArn(String roleArn) { this.roleArn = roleArn; } /** ** The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the ML * model. *
* * @return The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create * the ML model. */ public String getRoleArn() { return this.roleArn; } /** ** The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the ML * model. *
* * @param roleArn * The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create * the ML model. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withRoleArn(String roleArn) { setRoleArn(roleArn); return this; } /** *
* The configuration is the TargetSamplingRate
, which is the sampling rate of the data after post
* processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected at a 1
* second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the rate you
* want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is PT15M, and
* the value for a 1 hour rate is PT1H
*
TargetSamplingRate
, which is the sampling rate of the data after
* post processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected
* at a 1 second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the
* rate you want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is
* PT15M, and the value for a 1 hour rate is PT1H
*/
public void setDataPreProcessingConfiguration(DataPreProcessingConfiguration dataPreProcessingConfiguration) {
this.dataPreProcessingConfiguration = dataPreProcessingConfiguration;
}
/**
*
* The configuration is the TargetSamplingRate
, which is the sampling rate of the data after post
* processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected at a 1
* second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the rate you
* want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is PT15M, and
* the value for a 1 hour rate is PT1H
*
TargetSamplingRate
, which is the sampling rate of the data after
* post processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected
* at a 1 second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the
* rate you want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is
* PT15M, and the value for a 1 hour rate is PT1H
*/
public DataPreProcessingConfiguration getDataPreProcessingConfiguration() {
return this.dataPreProcessingConfiguration;
}
/**
*
* The configuration is the TargetSamplingRate
, which is the sampling rate of the data after post
* processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected at a 1
* second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the rate you
* want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is PT15M, and
* the value for a 1 hour rate is PT1H
*
TargetSamplingRate
, which is the sampling rate of the data after
* post processing by Amazon Lookout for Equipment. For example, if you provide data that has been collected
* at a 1 second level and you want the system to resample the data at a 1 minute rate before training, the
* TargetSamplingRate
is 1 minute.
*
* When providing a value for the TargetSamplingRate
, you must attach the prefix "PT" to the
* rate you want. The value for a 1 second rate is therefore PT1S, the value for a 15 minute rate is
* PT15M, and the value for a 1 hour rate is PT1H
* @return Returns a reference to this object so that method calls can be chained together.
*/
public CreateModelRequest withDataPreProcessingConfiguration(DataPreProcessingConfiguration dataPreProcessingConfiguration) {
setDataPreProcessingConfiguration(dataPreProcessingConfiguration);
return this;
}
/**
*
* Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. *
* * @param serverSideKmsKeyId * Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. */ public void setServerSideKmsKeyId(String serverSideKmsKeyId) { this.serverSideKmsKeyId = serverSideKmsKeyId; } /** ** Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. *
* * @return Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. */ public String getServerSideKmsKeyId() { return this.serverSideKmsKeyId; } /** ** Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. *
* * @param serverSideKmsKeyId * Provides the identifier of the KMS key used to encrypt model data by Amazon Lookout for Equipment. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withServerSideKmsKeyId(String serverSideKmsKeyId) { setServerSideKmsKeyId(serverSideKmsKeyId); return this; } /** ** Any tags associated with the ML model being created. *
* * @return Any tags associated with the ML model being created. */ public java.util.List* Any tags associated with the ML model being created. *
* * @param tags * Any tags associated with the ML model being created. */ public void setTags(java.util.Collection* Any tags associated with the ML model being created. *
** NOTE: This method appends the values to the existing list (if any). Use * {@link #setTags(java.util.Collection)} or {@link #withTags(java.util.Collection)} if you want to override the * existing values. *
* * @param tags * Any tags associated with the ML model being created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withTags(Tag... tags) { if (this.tags == null) { setTags(new java.util.ArrayList* Any tags associated with the ML model being created. *
* * @param tags * Any tags associated with the ML model being created. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withTags(java.util.Collection* Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, Lookout * for Equipment will not use data from this asset for training, evaluation, or inference. *
* * @param offCondition * Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, * Lookout for Equipment will not use data from this asset for training, evaluation, or inference. */ public void setOffCondition(String offCondition) { this.offCondition = offCondition; } /** ** Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, Lookout * for Equipment will not use data from this asset for training, evaluation, or inference. *
* * @return Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, * Lookout for Equipment will not use data from this asset for training, evaluation, or inference. */ public String getOffCondition() { return this.offCondition; } /** ** Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, Lookout * for Equipment will not use data from this asset for training, evaluation, or inference. *
* * @param offCondition * Indicates that the asset associated with this sensor has been shut off. As long as this condition is met, * Lookout for Equipment will not use data from this asset for training, evaluation, or inference. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateModelRequest withOffCondition(String offCondition) { setOffCondition(offCondition); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getModelName() != null) sb.append("ModelName: ").append(getModelName()).append(","); if (getDatasetName() != null) sb.append("DatasetName: ").append(getDatasetName()).append(","); if (getDatasetSchema() != null) sb.append("DatasetSchema: ").append(getDatasetSchema()).append(","); if (getLabelsInputConfiguration() != null) sb.append("LabelsInputConfiguration: ").append(getLabelsInputConfiguration()).append(","); if (getClientToken() != null) sb.append("ClientToken: ").append(getClientToken()).append(","); if (getTrainingDataStartTime() != null) sb.append("TrainingDataStartTime: ").append(getTrainingDataStartTime()).append(","); if (getTrainingDataEndTime() != null) sb.append("TrainingDataEndTime: ").append(getTrainingDataEndTime()).append(","); if (getEvaluationDataStartTime() != null) sb.append("EvaluationDataStartTime: ").append(getEvaluationDataStartTime()).append(","); if (getEvaluationDataEndTime() != null) sb.append("EvaluationDataEndTime: ").append(getEvaluationDataEndTime()).append(","); if (getRoleArn() != null) sb.append("RoleArn: ").append(getRoleArn()).append(","); if (getDataPreProcessingConfiguration() != null) sb.append("DataPreProcessingConfiguration: ").append(getDataPreProcessingConfiguration()).append(","); if (getServerSideKmsKeyId() != null) sb.append("ServerSideKmsKeyId: ").append(getServerSideKmsKeyId()).append(","); if (getTags() != null) sb.append("Tags: ").append(getTags()).append(","); if (getOffCondition() != null) sb.append("OffCondition: ").append(getOffCondition()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateModelRequest == false) return false; CreateModelRequest other = (CreateModelRequest) obj; if (other.getModelName() == null ^ this.getModelName() == null) return false; if (other.getModelName() != null && other.getModelName().equals(this.getModelName()) == false) return false; if (other.getDatasetName() == null ^ this.getDatasetName() == null) return false; if (other.getDatasetName() != null && other.getDatasetName().equals(this.getDatasetName()) == false) return false; if (other.getDatasetSchema() == null ^ this.getDatasetSchema() == null) return false; if (other.getDatasetSchema() != null && other.getDatasetSchema().equals(this.getDatasetSchema()) == false) return false; if (other.getLabelsInputConfiguration() == null ^ this.getLabelsInputConfiguration() == null) return false; if (other.getLabelsInputConfiguration() != null && other.getLabelsInputConfiguration().equals(this.getLabelsInputConfiguration()) == false) return false; if (other.getClientToken() == null ^ this.getClientToken() == null) return false; if (other.getClientToken() != null && other.getClientToken().equals(this.getClientToken()) == false) return false; if (other.getTrainingDataStartTime() == null ^ this.getTrainingDataStartTime() == null) return false; if (other.getTrainingDataStartTime() != null && other.getTrainingDataStartTime().equals(this.getTrainingDataStartTime()) == false) return false; if (other.getTrainingDataEndTime() == null ^ this.getTrainingDataEndTime() == null) return false; if (other.getTrainingDataEndTime() != null && other.getTrainingDataEndTime().equals(this.getTrainingDataEndTime()) == false) return false; if (other.getEvaluationDataStartTime() == null ^ this.getEvaluationDataStartTime() == null) return false; if (other.getEvaluationDataStartTime() != null && other.getEvaluationDataStartTime().equals(this.getEvaluationDataStartTime()) == false) return false; if (other.getEvaluationDataEndTime() == null ^ this.getEvaluationDataEndTime() == null) return false; if (other.getEvaluationDataEndTime() != null && other.getEvaluationDataEndTime().equals(this.getEvaluationDataEndTime()) == false) return false; if (other.getRoleArn() == null ^ this.getRoleArn() == null) return false; if (other.getRoleArn() != null && other.getRoleArn().equals(this.getRoleArn()) == false) return false; if (other.getDataPreProcessingConfiguration() == null ^ this.getDataPreProcessingConfiguration() == null) return false; if (other.getDataPreProcessingConfiguration() != null && other.getDataPreProcessingConfiguration().equals(this.getDataPreProcessingConfiguration()) == false) return false; if (other.getServerSideKmsKeyId() == null ^ this.getServerSideKmsKeyId() == null) return false; if (other.getServerSideKmsKeyId() != null && other.getServerSideKmsKeyId().equals(this.getServerSideKmsKeyId()) == false) return false; if (other.getTags() == null ^ this.getTags() == null) return false; if (other.getTags() != null && other.getTags().equals(this.getTags()) == false) return false; if (other.getOffCondition() == null ^ this.getOffCondition() == null) return false; if (other.getOffCondition() != null && other.getOffCondition().equals(this.getOffCondition()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getModelName() == null) ? 0 : getModelName().hashCode()); hashCode = prime * hashCode + ((getDatasetName() == null) ? 0 : getDatasetName().hashCode()); hashCode = prime * hashCode + ((getDatasetSchema() == null) ? 0 : getDatasetSchema().hashCode()); hashCode = prime * hashCode + ((getLabelsInputConfiguration() == null) ? 0 : getLabelsInputConfiguration().hashCode()); hashCode = prime * hashCode + ((getClientToken() == null) ? 0 : getClientToken().hashCode()); hashCode = prime * hashCode + ((getTrainingDataStartTime() == null) ? 0 : getTrainingDataStartTime().hashCode()); hashCode = prime * hashCode + ((getTrainingDataEndTime() == null) ? 0 : getTrainingDataEndTime().hashCode()); hashCode = prime * hashCode + ((getEvaluationDataStartTime() == null) ? 0 : getEvaluationDataStartTime().hashCode()); hashCode = prime * hashCode + ((getEvaluationDataEndTime() == null) ? 0 : getEvaluationDataEndTime().hashCode()); hashCode = prime * hashCode + ((getRoleArn() == null) ? 0 : getRoleArn().hashCode()); hashCode = prime * hashCode + ((getDataPreProcessingConfiguration() == null) ? 0 : getDataPreProcessingConfiguration().hashCode()); hashCode = prime * hashCode + ((getServerSideKmsKeyId() == null) ? 0 : getServerSideKmsKeyId().hashCode()); hashCode = prime * hashCode + ((getTags() == null) ? 0 : getTags().hashCode()); hashCode = prime * hashCode + ((getOffCondition() == null) ? 0 : getOffCondition().hashCode()); return hashCode; } @Override public CreateModelRequest clone() { return (CreateModelRequest) super.clone(); } }