/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.rekognition.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *

* The predicted gender of a detected face. *

*

* Amazon Rekognition makes gender binary (male/female) predictions based on the physical appearance of a face in a * particular image. This kind of prediction is not designed to categorize a person’s gender identity, and you shouldn't * use Amazon Rekognition to make such a determination. For example, a male actor wearing a long-haired wig and earrings * for a role might be predicted as female. *

*

* Using Amazon Rekognition to make gender binary predictions is best suited for use cases where aggregate gender * distribution statistics need to be analyzed without identifying specific users. For example, the percentage of female * users compared to male users on a social media platform. *

*

* We don't recommend using gender binary predictions to make decisions that impact an individual's rights, privacy, or * access to services. *

*/ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class Gender implements Serializable, Cloneable, StructuredPojo { /** *

* The predicted gender of the face. *

*/ private String value; /** *

* Level of confidence in the prediction. *

*/ private Float confidence; /** *

* The predicted gender of the face. *

* * @param value * The predicted gender of the face. * @see GenderType */ public void setValue(String value) { this.value = value; } /** *

* The predicted gender of the face. *

* * @return The predicted gender of the face. * @see GenderType */ public String getValue() { return this.value; } /** *

* The predicted gender of the face. *

* * @param value * The predicted gender of the face. * @return Returns a reference to this object so that method calls can be chained together. * @see GenderType */ public Gender withValue(String value) { setValue(value); return this; } /** *

* The predicted gender of the face. *

* * @param value * The predicted gender of the face. * @see GenderType */ public void setValue(GenderType value) { withValue(value); } /** *

* The predicted gender of the face. *

* * @param value * The predicted gender of the face. * @return Returns a reference to this object so that method calls can be chained together. * @see GenderType */ public Gender withValue(GenderType value) { this.value = value.toString(); return this; } /** *

* Level of confidence in the prediction. *

* * @param confidence * Level of confidence in the prediction. */ public void setConfidence(Float confidence) { this.confidence = confidence; } /** *

* Level of confidence in the prediction. *

* * @return Level of confidence in the prediction. */ public Float getConfidence() { return this.confidence; } /** *

* Level of confidence in the prediction. *

* * @param confidence * Level of confidence in the prediction. * @return Returns a reference to this object so that method calls can be chained together. */ public Gender withConfidence(Float confidence) { setConfidence(confidence); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getValue() != null) sb.append("Value: ").append(getValue()).append(","); if (getConfidence() != null) sb.append("Confidence: ").append(getConfidence()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof Gender == false) return false; Gender other = (Gender) obj; if (other.getValue() == null ^ this.getValue() == null) return false; if (other.getValue() != null && other.getValue().equals(this.getValue()) == false) return false; if (other.getConfidence() == null ^ this.getConfidence() == null) return false; if (other.getConfidence() != null && other.getConfidence().equals(this.getConfidence()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getValue() == null) ? 0 : getValue().hashCode()); hashCode = prime * hashCode + ((getConfidence() == null) ? 0 : getConfidence().hashCode()); return hashCode; } @Override public Gender clone() { try { return (Gender) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.rekognition.model.transform.GenderMarshaller.getInstance().marshall(this, protocolMarshaller); } }