/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** * <p> * This structure specifies how to split the data into train and validation datasets. * </p> * <p> * The validation and training datasets must contain the same headers. For jobs created by calling * <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size. * </p> * * @see <a href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig" target="_top">AWS * API Documentation</a> */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class AutoMLDataSplitConfig implements Serializable, Cloneable, StructuredPojo { /** * <p> * The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. * </p> */ private Float validationFraction; /** * <p> * The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. * </p> * * @param validationFraction * The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. */ public void setValidationFraction(Float validationFraction) { this.validationFraction = validationFraction; } /** * <p> * The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. * </p> * * @return The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. */ public Float getValidationFraction() { return this.validationFraction; } /** * <p> * The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. * </p> * * @param validationFraction * The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLDataSplitConfig withValidationFraction(Float validationFraction) { setValidationFraction(validationFraction); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getValidationFraction() != null) sb.append("ValidationFraction: ").append(getValidationFraction()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof AutoMLDataSplitConfig == false) return false; AutoMLDataSplitConfig other = (AutoMLDataSplitConfig) obj; if (other.getValidationFraction() == null ^ this.getValidationFraction() == null) return false; if (other.getValidationFraction() != null && other.getValidationFraction().equals(this.getValidationFraction()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getValidationFraction() == null) ? 0 : getValidationFraction().hashCode()); return hashCode; } @Override public AutoMLDataSplitConfig clone() { try { return (AutoMLDataSplitConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.AutoMLDataSplitConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }