/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** * <p> * A list of continuous hyperparameters to tune. * </p> * * @see <a href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange" target="_top">AWS * API Documentation</a> */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ContinuousParameterRange implements Serializable, Cloneable, StructuredPojo { /** * <p> * The name of the continuous hyperparameter to tune. * </p> */ private String name; /** * <p> * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. * </p> */ private String minValue; /** * <p> * The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> * value and this value for tuning. * </p> */ private String maxValue; /** * <p> * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see <a * href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values: * </p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * </dl> */ private String scalingType; /** * <p> * The name of the continuous hyperparameter to tune. * </p> * * @param name * The name of the continuous hyperparameter to tune. */ public void setName(String name) { this.name = name; } /** * <p> * The name of the continuous hyperparameter to tune. * </p> * * @return The name of the continuous hyperparameter to tune. */ public String getName() { return this.name; } /** * <p> * The name of the continuous hyperparameter to tune. * </p> * * @param name * The name of the continuous hyperparameter to tune. * @return Returns a reference to this object so that method calls can be chained together. */ public ContinuousParameterRange withName(String name) { setName(name); return this; } /** * <p> * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. * </p> * * @param minValue * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. */ public void setMinValue(String minValue) { this.minValue = minValue; } /** * <p> * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. * </p> * * @return The minimum value for the hyperparameter. The tuning job uses floating-point values between this value * and <code>MaxValue</code>for tuning. */ public String getMinValue() { return this.minValue; } /** * <p> * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. * </p> * * @param minValue * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and * <code>MaxValue</code>for tuning. * @return Returns a reference to this object so that method calls can be chained together. */ public ContinuousParameterRange withMinValue(String minValue) { setMinValue(minValue); return this; } /** * <p> * The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> * value and this value for tuning. * </p> * * @param maxValue * The maximum value for the hyperparameter. The tuning job uses floating-point values between * <code>MinValue</code> value and this value for tuning. */ public void setMaxValue(String maxValue) { this.maxValue = maxValue; } /** * <p> * The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> * value and this value for tuning. * </p> * * @return The maximum value for the hyperparameter. The tuning job uses floating-point values between * <code>MinValue</code> value and this value for tuning. */ public String getMaxValue() { return this.maxValue; } /** * <p> * The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> * value and this value for tuning. * </p> * * @param maxValue * The maximum value for the hyperparameter. The tuning job uses floating-point values between * <code>MinValue</code> value and this value for tuning. * @return Returns a reference to this object so that method calls can be chained together. */ public ContinuousParameterRange withMaxValue(String maxValue) { setMaxValue(maxValue); return this; } /** * <p> * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see <a * href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values: * </p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * </dl> * * @param scalingType * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about * choosing a hyperparameter scale, see <a href= * "https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values:</p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * @see HyperParameterScalingType */ public void setScalingType(String scalingType) { this.scalingType = scalingType; } /** * <p> * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see <a * href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values: * </p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * </dl> * * @return The scale that hyperparameter tuning uses to search the hyperparameter range. For information about * choosing a hyperparameter scale, see <a href= * "https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values:</p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * @see HyperParameterScalingType */ public String getScalingType() { return this.scalingType; } /** * <p> * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see <a * href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values: * </p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * </dl> * * @param scalingType * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about * choosing a hyperparameter scale, see <a href= * "https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values:</p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * @return Returns a reference to this object so that method calls can be chained together. * @see HyperParameterScalingType */ public ContinuousParameterRange withScalingType(String scalingType) { setScalingType(scalingType); return this; } /** * <p> * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see <a * href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values: * </p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * </dl> * * @param scalingType * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about * choosing a hyperparameter scale, see <a href= * "https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type" * >Hyperparameter Scaling</a>. One of the following values:</p> * <dl> * <dt>Auto</dt> * <dd> * <p> * SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. * </p> * </dd> * <dt>Linear</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. * </p> * </dd> * <dt>Logarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. * </p> * <p> * Logarithmic scaling works only for ranges that have only values greater than 0. * </p> * </dd> * <dt>ReverseLogarithmic</dt> * <dd> * <p> * Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. * </p> * <p> * Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. * </p> * </dd> * @return Returns a reference to this object so that method calls can be chained together. * @see HyperParameterScalingType */ public ContinuousParameterRange withScalingType(HyperParameterScalingType scalingType) { this.scalingType = scalingType.toString(); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getName() != null) sb.append("Name: ").append(getName()).append(","); if (getMinValue() != null) sb.append("MinValue: ").append(getMinValue()).append(","); if (getMaxValue() != null) sb.append("MaxValue: ").append(getMaxValue()).append(","); if (getScalingType() != null) sb.append("ScalingType: ").append(getScalingType()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof ContinuousParameterRange == false) return false; ContinuousParameterRange other = (ContinuousParameterRange) obj; if (other.getName() == null ^ this.getName() == null) return false; if (other.getName() != null && other.getName().equals(this.getName()) == false) return false; if (other.getMinValue() == null ^ this.getMinValue() == null) return false; if (other.getMinValue() != null && other.getMinValue().equals(this.getMinValue()) == false) return false; if (other.getMaxValue() == null ^ this.getMaxValue() == null) return false; if (other.getMaxValue() != null && other.getMaxValue().equals(this.getMaxValue()) == false) return false; if (other.getScalingType() == null ^ this.getScalingType() == null) return false; if (other.getScalingType() != null && other.getScalingType().equals(this.getScalingType()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getName() == null) ? 0 : getName().hashCode()); hashCode = prime * hashCode + ((getMinValue() == null) ? 0 : getMinValue().hashCode()); hashCode = prime * hashCode + ((getMaxValue() == null) ? 0 : getMaxValue().hashCode()); hashCode = prime * hashCode + ((getScalingType() == null) ? 0 : getScalingType().hashCode()); return hashCode; } @Override public ContinuousParameterRange clone() { try { return (ContinuousParameterRange) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.ContinuousParameterRangeMarshaller.getInstance().marshall(this, protocolMarshaller); } }