/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *
* A list of continuous hyperparameters to tune. *
* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ContinuousParameterRange implements Serializable, Cloneable, StructuredPojo { /** ** The name of the continuous hyperparameter to tune. *
*/ private String name; /** *
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
* MaxValue
for tuning.
*
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue
* value and this value for tuning.
*
* The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see Hyperparameter Scaling. One of the following values: *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** The name of the continuous hyperparameter to tune. *
* * @param name * The name of the continuous hyperparameter to tune. */ public void setName(String name) { this.name = name; } /** ** The name of the continuous hyperparameter to tune. *
* * @return The name of the continuous hyperparameter to tune. */ public String getName() { return this.name; } /** ** The name of the continuous hyperparameter to tune. *
* * @param name * The name of the continuous hyperparameter to tune. * @return Returns a reference to this object so that method calls can be chained together. */ public ContinuousParameterRange withName(String name) { setName(name); return this; } /** *
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
* MaxValue
for tuning.
*
MaxValue
for tuning.
*/
public void setMinValue(String minValue) {
this.minValue = minValue;
}
/**
*
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
* MaxValue
for tuning.
*
MaxValue
for tuning.
*/
public String getMinValue() {
return this.minValue;
}
/**
*
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
* MaxValue
for tuning.
*
MaxValue
for tuning.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ContinuousParameterRange withMinValue(String minValue) {
setMinValue(minValue);
return this;
}
/**
*
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue
* value and this value for tuning.
*
MinValue
value and this value for tuning.
*/
public void setMaxValue(String maxValue) {
this.maxValue = maxValue;
}
/**
*
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue
* value and this value for tuning.
*
MinValue
value and this value for tuning.
*/
public String getMaxValue() {
return this.maxValue;
}
/**
*
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue
* value and this value for tuning.
*
MinValue
value and this value for tuning.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ContinuousParameterRange withMaxValue(String maxValue) {
setMaxValue(maxValue);
return this;
}
/**
* * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see Hyperparameter Scaling. One of the following values: *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see Hyperparameter Scaling. One of the following values: *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see Hyperparameter Scaling. One of the following values: *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a * hyperparameter scale, see Hyperparameter Scaling. One of the following values: *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
** SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. *
** Logarithmic scaling works only for ranges that have only values greater than 0. *
** Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic * scale. *
** Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0. *
*