/*
* Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.sagemaker.model;
import java.io.Serializable;
import javax.annotation.Generated;
/**
*
* @see AWS API
* Documentation
*/
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class DescribeTransformJobResult extends com.amazonaws.AmazonWebServiceResult
* The name of the transform job.
*
* The Amazon Resource Name (ARN) of the transform job.
*
* The status of the transform job. If the transform job failed, the reason is returned in the
*
* If the transform job failed,
* The name of the model used in the transform job.
*
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The
* default value is 1.
*
* The timeout and maximum number of retries for processing a transform job invocation.
*
* The maximum payload size, in MB, used in the transform job.
*
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is
* a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
*
* To enable the batch strategy, you must set
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*
* Describes the dataset to be transformed and the Amazon S3 location where it is stored.
*
* Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
*
* Configuration to control how SageMaker captures inference data.
*
* Describes the resources, including ML instance types and ML instance count, to use for the transform job.
*
* A timestamp that shows when the transform Job was created.
*
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time
* and the value of
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time
* interval between this time and the value of
* The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or
* training job.
*
* The Amazon Resource Name (ARN) of the AutoML transform job.
*
* The name of the transform job.
*
* The name of the transform job.
*
* The name of the transform job.
*
* The Amazon Resource Name (ARN) of the transform job.
*
* The Amazon Resource Name (ARN) of the transform job.
*
* The Amazon Resource Name (ARN) of the transform job.
*
* The status of the transform job. If the transform job failed, the reason is returned in the
*
* The status of the transform job. If the transform job failed, the reason is returned in the
*
* The status of the transform job. If the transform job failed, the reason is returned in the
*
* The status of the transform job. If the transform job failed, the reason is returned in the
*
* If the transform job failed,
* If the transform job failed,
* If the transform job failed,
* The name of the model used in the transform job.
*
* The name of the model used in the transform job.
*
* The name of the model used in the transform job.
*
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The
* default value is 1.
*
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The
* default value is 1.
*
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The
* default value is 1.
*
* The timeout and maximum number of retries for processing a transform job invocation.
*
* The timeout and maximum number of retries for processing a transform job invocation.
*
* The timeout and maximum number of retries for processing a transform job invocation.
*
* The maximum payload size, in MB, used in the transform job.
*
* The maximum payload size, in MB, used in the transform job.
*
* The maximum payload size, in MB, used in the transform job.
*
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is
* a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
*
* To enable the batch strategy, you must set FailureReason
field.
* FailureReason
describes why it failed. A transform job creates a log
* file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with
* Amazon CloudWatch.
* SplitType
to Line
, RecordIO
, or
* TFRecord
.
* TransformEndTime
.
* TransformStartTime
.
* FailureReason
field.
* FailureReason
field.
* @see TransformJobStatus
*/
public void setTransformJobStatus(String transformJobStatus) {
this.transformJobStatus = transformJobStatus;
}
/**
* FailureReason
field.
* FailureReason
field.
* @see TransformJobStatus
*/
public String getTransformJobStatus() {
return this.transformJobStatus;
}
/**
* FailureReason
field.
* FailureReason
field.
* @return Returns a reference to this object so that method calls can be chained together.
* @see TransformJobStatus
*/
public DescribeTransformJobResult withTransformJobStatus(String transformJobStatus) {
setTransformJobStatus(transformJobStatus);
return this;
}
/**
* FailureReason
field.
* FailureReason
field.
* @return Returns a reference to this object so that method calls can be chained together.
* @see TransformJobStatus
*/
public DescribeTransformJobResult withTransformJobStatus(TransformJobStatus transformJobStatus) {
this.transformJobStatus = transformJobStatus.toString();
return this;
}
/**
* FailureReason
describes why it failed. A transform job creates a log
* file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with
* Amazon CloudWatch.
* FailureReason
describes why it failed. A transform job creates a
* log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see
* Log Amazon SageMaker
* Events with Amazon CloudWatch.
*/
public void setFailureReason(String failureReason) {
this.failureReason = failureReason;
}
/**
* FailureReason
describes why it failed. A transform job creates a log
* file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with
* Amazon CloudWatch.
* FailureReason
describes why it failed. A transform job creates
* a log file, which includes error messages, and stores it as an Amazon S3 object. For more information,
* see Log Amazon
* SageMaker Events with Amazon CloudWatch.
*/
public String getFailureReason() {
return this.failureReason;
}
/**
* FailureReason
describes why it failed. A transform job creates a log
* file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with
* Amazon CloudWatch.
* FailureReason
describes why it failed. A transform job creates a
* log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see
* Log Amazon SageMaker
* Events with Amazon CloudWatch.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public DescribeTransformJobResult withFailureReason(String failureReason) {
setFailureReason(failureReason);
return this;
}
/**
* SplitType
to Line
, RecordIO
, or
* TFRecord
.
*
* To enable the batch strategy, you must set SplitType
to Line
,
* RecordIO
, or TFRecord
.
* @see BatchStrategy
*/
public void setBatchStrategy(String batchStrategy) {
this.batchStrategy = batchStrategy;
}
/**
*
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is * a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. *
*
* To enable the batch strategy, you must set SplitType
to Line
, RecordIO
, or
* TFRecord
.
*
* To enable the batch strategy, you must set SplitType
to Line
,
* RecordIO
, or TFRecord
.
* @see BatchStrategy
*/
public String getBatchStrategy() {
return this.batchStrategy;
}
/**
*
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is * a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. *
*
* To enable the batch strategy, you must set SplitType
to Line
, RecordIO
, or
* TFRecord
.
*
* To enable the batch strategy, you must set SplitType
to Line
,
* RecordIO
, or TFRecord
.
* @return Returns a reference to this object so that method calls can be chained together.
* @see BatchStrategy
*/
public DescribeTransformJobResult withBatchStrategy(String batchStrategy) {
setBatchStrategy(batchStrategy);
return this;
}
/**
*
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is * a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. *
*
* To enable the batch strategy, you must set SplitType
to Line
, RecordIO
, or
* TFRecord
.
*
* To enable the batch strategy, you must set SplitType
to Line
,
* RecordIO
, or TFRecord
.
* @return Returns a reference to this object so that method calls can be chained together.
* @see BatchStrategy
*/
public DescribeTransformJobResult withBatchStrategy(BatchStrategy batchStrategy) {
this.batchStrategy = batchStrategy.toString();
return this;
}
/**
*
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map. *
* * @return The environment variables to set in the Docker container. We support up to 16 key and values entries in * the map. */ public java.util.Map* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map. *
* * @param environment * The environment variables to set in the Docker container. We support up to 16 key and values entries in * the map. */ public void setEnvironment(java.util.Map* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map. *
* * @param environment * The environment variables to set in the Docker container. We support up to 16 key and values entries in * the map. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withEnvironment(java.util.Map* Describes the dataset to be transformed and the Amazon S3 location where it is stored. *
* * @param transformInput * Describes the dataset to be transformed and the Amazon S3 location where it is stored. */ public void setTransformInput(TransformInput transformInput) { this.transformInput = transformInput; } /** ** Describes the dataset to be transformed and the Amazon S3 location where it is stored. *
* * @return Describes the dataset to be transformed and the Amazon S3 location where it is stored. */ public TransformInput getTransformInput() { return this.transformInput; } /** ** Describes the dataset to be transformed and the Amazon S3 location where it is stored. *
* * @param transformInput * Describes the dataset to be transformed and the Amazon S3 location where it is stored. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withTransformInput(TransformInput transformInput) { setTransformInput(transformInput); return this; } /** ** Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. *
* * @param transformOutput * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform * job. */ public void setTransformOutput(TransformOutput transformOutput) { this.transformOutput = transformOutput; } /** ** Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. *
* * @return Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform * job. */ public TransformOutput getTransformOutput() { return this.transformOutput; } /** ** Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. *
* * @param transformOutput * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform * job. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withTransformOutput(TransformOutput transformOutput) { setTransformOutput(transformOutput); return this; } /** ** Configuration to control how SageMaker captures inference data. *
* * @param dataCaptureConfig * Configuration to control how SageMaker captures inference data. */ public void setDataCaptureConfig(BatchDataCaptureConfig dataCaptureConfig) { this.dataCaptureConfig = dataCaptureConfig; } /** ** Configuration to control how SageMaker captures inference data. *
* * @return Configuration to control how SageMaker captures inference data. */ public BatchDataCaptureConfig getDataCaptureConfig() { return this.dataCaptureConfig; } /** ** Configuration to control how SageMaker captures inference data. *
* * @param dataCaptureConfig * Configuration to control how SageMaker captures inference data. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withDataCaptureConfig(BatchDataCaptureConfig dataCaptureConfig) { setDataCaptureConfig(dataCaptureConfig); return this; } /** ** Describes the resources, including ML instance types and ML instance count, to use for the transform job. *
* * @param transformResources * Describes the resources, including ML instance types and ML instance count, to use for the transform job. */ public void setTransformResources(TransformResources transformResources) { this.transformResources = transformResources; } /** ** Describes the resources, including ML instance types and ML instance count, to use for the transform job. *
* * @return Describes the resources, including ML instance types and ML instance count, to use for the transform job. */ public TransformResources getTransformResources() { return this.transformResources; } /** ** Describes the resources, including ML instance types and ML instance count, to use for the transform job. *
* * @param transformResources * Describes the resources, including ML instance types and ML instance count, to use for the transform job. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withTransformResources(TransformResources transformResources) { setTransformResources(transformResources); return this; } /** ** A timestamp that shows when the transform Job was created. *
* * @param creationTime * A timestamp that shows when the transform Job was created. */ public void setCreationTime(java.util.Date creationTime) { this.creationTime = creationTime; } /** ** A timestamp that shows when the transform Job was created. *
* * @return A timestamp that shows when the transform Job was created. */ public java.util.Date getCreationTime() { return this.creationTime; } /** ** A timestamp that shows when the transform Job was created. *
* * @param creationTime * A timestamp that shows when the transform Job was created. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withCreationTime(java.util.Date creationTime) { setCreationTime(creationTime); return this; } /** *
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time
* and the value of TransformEndTime
.
*
TransformEndTime
.
*/
public void setTransformStartTime(java.util.Date transformStartTime) {
this.transformStartTime = transformStartTime;
}
/**
*
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time
* and the value of TransformEndTime
.
*
TransformEndTime
.
*/
public java.util.Date getTransformStartTime() {
return this.transformStartTime;
}
/**
*
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time
* and the value of TransformEndTime
.
*
TransformEndTime
.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public DescribeTransformJobResult withTransformStartTime(java.util.Date transformStartTime) {
setTransformStartTime(transformStartTime);
return this;
}
/**
*
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time
* interval between this time and the value of TransformStartTime
.
*
TransformStartTime
.
*/
public void setTransformEndTime(java.util.Date transformEndTime) {
this.transformEndTime = transformEndTime;
}
/**
*
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time
* interval between this time and the value of TransformStartTime
.
*
TransformStartTime
.
*/
public java.util.Date getTransformEndTime() {
return this.transformEndTime;
}
/**
*
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time
* interval between this time and the value of TransformStartTime
.
*
TransformStartTime
.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public DescribeTransformJobResult withTransformEndTime(java.util.Date transformEndTime) {
setTransformEndTime(transformEndTime);
return this;
}
/**
* * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or * training job. *
* * @param labelingJobArn * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the * transform or training job. */ public void setLabelingJobArn(String labelingJobArn) { this.labelingJobArn = labelingJobArn; } /** ** The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or * training job. *
* * @return The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the * transform or training job. */ public String getLabelingJobArn() { return this.labelingJobArn; } /** ** The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or * training job. *
* * @param labelingJobArn * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the * transform or training job. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withLabelingJobArn(String labelingJobArn) { setLabelingJobArn(labelingJobArn); return this; } /** ** The Amazon Resource Name (ARN) of the AutoML transform job. *
* * @param autoMLJobArn * The Amazon Resource Name (ARN) of the AutoML transform job. */ public void setAutoMLJobArn(String autoMLJobArn) { this.autoMLJobArn = autoMLJobArn; } /** ** The Amazon Resource Name (ARN) of the AutoML transform job. *
* * @return The Amazon Resource Name (ARN) of the AutoML transform job. */ public String getAutoMLJobArn() { return this.autoMLJobArn; } /** ** The Amazon Resource Name (ARN) of the AutoML transform job. *
* * @param autoMLJobArn * The Amazon Resource Name (ARN) of the AutoML transform job. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withAutoMLJobArn(String autoMLJobArn) { setAutoMLJobArn(autoMLJobArn); return this; } /** * @param dataProcessing */ public void setDataProcessing(DataProcessing dataProcessing) { this.dataProcessing = dataProcessing; } /** * @return */ public DataProcessing getDataProcessing() { return this.dataProcessing; } /** * @param dataProcessing * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withDataProcessing(DataProcessing dataProcessing) { setDataProcessing(dataProcessing); return this; } /** * @param experimentConfig */ public void setExperimentConfig(ExperimentConfig experimentConfig) { this.experimentConfig = experimentConfig; } /** * @return */ public ExperimentConfig getExperimentConfig() { return this.experimentConfig; } /** * @param experimentConfig * @return Returns a reference to this object so that method calls can be chained together. */ public DescribeTransformJobResult withExperimentConfig(ExperimentConfig experimentConfig) { setExperimentConfig(experimentConfig); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getTransformJobName() != null) sb.append("TransformJobName: ").append(getTransformJobName()).append(","); if (getTransformJobArn() != null) sb.append("TransformJobArn: ").append(getTransformJobArn()).append(","); if (getTransformJobStatus() != null) sb.append("TransformJobStatus: ").append(getTransformJobStatus()).append(","); if (getFailureReason() != null) sb.append("FailureReason: ").append(getFailureReason()).append(","); if (getModelName() != null) sb.append("ModelName: ").append(getModelName()).append(","); if (getMaxConcurrentTransforms() != null) sb.append("MaxConcurrentTransforms: ").append(getMaxConcurrentTransforms()).append(","); if (getModelClientConfig() != null) sb.append("ModelClientConfig: ").append(getModelClientConfig()).append(","); if (getMaxPayloadInMB() != null) sb.append("MaxPayloadInMB: ").append(getMaxPayloadInMB()).append(","); if (getBatchStrategy() != null) sb.append("BatchStrategy: ").append(getBatchStrategy()).append(","); if (getEnvironment() != null) sb.append("Environment: ").append(getEnvironment()).append(","); if (getTransformInput() != null) sb.append("TransformInput: ").append(getTransformInput()).append(","); if (getTransformOutput() != null) sb.append("TransformOutput: ").append(getTransformOutput()).append(","); if (getDataCaptureConfig() != null) sb.append("DataCaptureConfig: ").append(getDataCaptureConfig()).append(","); if (getTransformResources() != null) sb.append("TransformResources: ").append(getTransformResources()).append(","); if (getCreationTime() != null) sb.append("CreationTime: ").append(getCreationTime()).append(","); if (getTransformStartTime() != null) sb.append("TransformStartTime: ").append(getTransformStartTime()).append(","); if (getTransformEndTime() != null) sb.append("TransformEndTime: ").append(getTransformEndTime()).append(","); if (getLabelingJobArn() != null) sb.append("LabelingJobArn: ").append(getLabelingJobArn()).append(","); if (getAutoMLJobArn() != null) sb.append("AutoMLJobArn: ").append(getAutoMLJobArn()).append(","); if (getDataProcessing() != null) sb.append("DataProcessing: ").append(getDataProcessing()).append(","); if (getExperimentConfig() != null) sb.append("ExperimentConfig: ").append(getExperimentConfig()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof DescribeTransformJobResult == false) return false; DescribeTransformJobResult other = (DescribeTransformJobResult) obj; if (other.getTransformJobName() == null ^ this.getTransformJobName() == null) return false; if (other.getTransformJobName() != null && other.getTransformJobName().equals(this.getTransformJobName()) == false) return false; if (other.getTransformJobArn() == null ^ this.getTransformJobArn() == null) return false; if (other.getTransformJobArn() != null && other.getTransformJobArn().equals(this.getTransformJobArn()) == false) return false; if (other.getTransformJobStatus() == null ^ this.getTransformJobStatus() == null) return false; if (other.getTransformJobStatus() != null && other.getTransformJobStatus().equals(this.getTransformJobStatus()) == false) return false; if (other.getFailureReason() == null ^ this.getFailureReason() == null) return false; if (other.getFailureReason() != null && other.getFailureReason().equals(this.getFailureReason()) == false) return false; if (other.getModelName() == null ^ this.getModelName() == null) return false; if (other.getModelName() != null && other.getModelName().equals(this.getModelName()) == false) return false; if (other.getMaxConcurrentTransforms() == null ^ this.getMaxConcurrentTransforms() == null) return false; if (other.getMaxConcurrentTransforms() != null && other.getMaxConcurrentTransforms().equals(this.getMaxConcurrentTransforms()) == false) return false; if (other.getModelClientConfig() == null ^ this.getModelClientConfig() == null) return false; if (other.getModelClientConfig() != null && other.getModelClientConfig().equals(this.getModelClientConfig()) == false) return false; if (other.getMaxPayloadInMB() == null ^ this.getMaxPayloadInMB() == null) return false; if (other.getMaxPayloadInMB() != null && other.getMaxPayloadInMB().equals(this.getMaxPayloadInMB()) == false) return false; if (other.getBatchStrategy() == null ^ this.getBatchStrategy() == null) return false; if (other.getBatchStrategy() != null && other.getBatchStrategy().equals(this.getBatchStrategy()) == false) return false; if (other.getEnvironment() == null ^ this.getEnvironment() == null) return false; if (other.getEnvironment() != null && other.getEnvironment().equals(this.getEnvironment()) == false) return false; if (other.getTransformInput() == null ^ this.getTransformInput() == null) return false; if (other.getTransformInput() != null && other.getTransformInput().equals(this.getTransformInput()) == false) return false; if (other.getTransformOutput() == null ^ this.getTransformOutput() == null) return false; if (other.getTransformOutput() != null && other.getTransformOutput().equals(this.getTransformOutput()) == false) return false; if (other.getDataCaptureConfig() == null ^ this.getDataCaptureConfig() == null) return false; if (other.getDataCaptureConfig() != null && other.getDataCaptureConfig().equals(this.getDataCaptureConfig()) == false) return false; if (other.getTransformResources() == null ^ this.getTransformResources() == null) return false; if (other.getTransformResources() != null && other.getTransformResources().equals(this.getTransformResources()) == false) return false; if (other.getCreationTime() == null ^ this.getCreationTime() == null) return false; if (other.getCreationTime() != null && other.getCreationTime().equals(this.getCreationTime()) == false) return false; if (other.getTransformStartTime() == null ^ this.getTransformStartTime() == null) return false; if (other.getTransformStartTime() != null && other.getTransformStartTime().equals(this.getTransformStartTime()) == false) return false; if (other.getTransformEndTime() == null ^ this.getTransformEndTime() == null) return false; if (other.getTransformEndTime() != null && other.getTransformEndTime().equals(this.getTransformEndTime()) == false) return false; if (other.getLabelingJobArn() == null ^ this.getLabelingJobArn() == null) return false; if (other.getLabelingJobArn() != null && other.getLabelingJobArn().equals(this.getLabelingJobArn()) == false) return false; if (other.getAutoMLJobArn() == null ^ this.getAutoMLJobArn() == null) return false; if (other.getAutoMLJobArn() != null && other.getAutoMLJobArn().equals(this.getAutoMLJobArn()) == false) return false; if (other.getDataProcessing() == null ^ this.getDataProcessing() == null) return false; if (other.getDataProcessing() != null && other.getDataProcessing().equals(this.getDataProcessing()) == false) return false; if (other.getExperimentConfig() == null ^ this.getExperimentConfig() == null) return false; if (other.getExperimentConfig() != null && other.getExperimentConfig().equals(this.getExperimentConfig()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getTransformJobName() == null) ? 0 : getTransformJobName().hashCode()); hashCode = prime * hashCode + ((getTransformJobArn() == null) ? 0 : getTransformJobArn().hashCode()); hashCode = prime * hashCode + ((getTransformJobStatus() == null) ? 0 : getTransformJobStatus().hashCode()); hashCode = prime * hashCode + ((getFailureReason() == null) ? 0 : getFailureReason().hashCode()); hashCode = prime * hashCode + ((getModelName() == null) ? 0 : getModelName().hashCode()); hashCode = prime * hashCode + ((getMaxConcurrentTransforms() == null) ? 0 : getMaxConcurrentTransforms().hashCode()); hashCode = prime * hashCode + ((getModelClientConfig() == null) ? 0 : getModelClientConfig().hashCode()); hashCode = prime * hashCode + ((getMaxPayloadInMB() == null) ? 0 : getMaxPayloadInMB().hashCode()); hashCode = prime * hashCode + ((getBatchStrategy() == null) ? 0 : getBatchStrategy().hashCode()); hashCode = prime * hashCode + ((getEnvironment() == null) ? 0 : getEnvironment().hashCode()); hashCode = prime * hashCode + ((getTransformInput() == null) ? 0 : getTransformInput().hashCode()); hashCode = prime * hashCode + ((getTransformOutput() == null) ? 0 : getTransformOutput().hashCode()); hashCode = prime * hashCode + ((getDataCaptureConfig() == null) ? 0 : getDataCaptureConfig().hashCode()); hashCode = prime * hashCode + ((getTransformResources() == null) ? 0 : getTransformResources().hashCode()); hashCode = prime * hashCode + ((getCreationTime() == null) ? 0 : getCreationTime().hashCode()); hashCode = prime * hashCode + ((getTransformStartTime() == null) ? 0 : getTransformStartTime().hashCode()); hashCode = prime * hashCode + ((getTransformEndTime() == null) ? 0 : getTransformEndTime().hashCode()); hashCode = prime * hashCode + ((getLabelingJobArn() == null) ? 0 : getLabelingJobArn().hashCode()); hashCode = prime * hashCode + ((getAutoMLJobArn() == null) ? 0 : getAutoMLJobArn().hashCode()); hashCode = prime * hashCode + ((getDataProcessing() == null) ? 0 : getDataProcessing().hashCode()); hashCode = prime * hashCode + ((getExperimentConfig() == null) ? 0 : getExperimentConfig().hashCode()); return hashCode; } @Override public DescribeTransformJobResult clone() { try { return (DescribeTransformJobResult) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } }