/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *
* Shows the latest objective metric emitted by a training job that was launched by a hyperparameter tuning job. You
* define the objective metric in the HyperParameterTuningJobObjective
parameter of HyperParameterTuningJobConfig.
*
* Select if you want to minimize or maximize the objective metric during hyperparameter tuning. *
*/ private String type; /** ** The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. See the * metrics for XGBoost as an * example. You can also use a custom algorithm for training and define your own metrics. For more information, see * * Define metrics and environment variables. *
*/ private String metricName; /** ** The value of the objective metric. *
*/ private Float value; /** ** Select if you want to minimize or maximize the objective metric during hyperparameter tuning. *
* * @param type * Select if you want to minimize or maximize the objective metric during hyperparameter tuning. * @see HyperParameterTuningJobObjectiveType */ public void setType(String type) { this.type = type; } /** ** Select if you want to minimize or maximize the objective metric during hyperparameter tuning. *
* * @return Select if you want to minimize or maximize the objective metric during hyperparameter tuning. * @see HyperParameterTuningJobObjectiveType */ public String getType() { return this.type; } /** ** Select if you want to minimize or maximize the objective metric during hyperparameter tuning. *
* * @param type * Select if you want to minimize or maximize the objective metric during hyperparameter tuning. * @return Returns a reference to this object so that method calls can be chained together. * @see HyperParameterTuningJobObjectiveType */ public FinalHyperParameterTuningJobObjectiveMetric withType(String type) { setType(type); return this; } /** ** Select if you want to minimize or maximize the objective metric during hyperparameter tuning. *
* * @param type * Select if you want to minimize or maximize the objective metric during hyperparameter tuning. * @return Returns a reference to this object so that method calls can be chained together. * @see HyperParameterTuningJobObjectiveType */ public FinalHyperParameterTuningJobObjectiveMetric withType(HyperParameterTuningJobObjectiveType type) { this.type = type.toString(); return this; } /** ** The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. See the * metrics for XGBoost as an * example. You can also use a custom algorithm for training and define your own metrics. For more information, see * * Define metrics and environment variables. *
* * @param metricName * The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. * See the metrics for * XGBoost as an example. You can also use a custom algorithm for training and define your own metrics. * For more information, see Define metrics and environment variables. */ public void setMetricName(String metricName) { this.metricName = metricName; } /** ** The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. See the * metrics for XGBoost as an * example. You can also use a custom algorithm for training and define your own metrics. For more information, see * * Define metrics and environment variables. *
* * @return The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. * See the metrics for * XGBoost as an example. You can also use a custom algorithm for training and define your own metrics. * For more information, see Define metrics and environment variables. */ public String getMetricName() { return this.metricName; } /** ** The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. See the * metrics for XGBoost as an * example. You can also use a custom algorithm for training and define your own metrics. For more information, see * * Define metrics and environment variables. *
* * @param metricName * The name of the objective metric. For SageMaker built-in algorithms, metrics are defined per algorithm. * See the metrics for * XGBoost as an example. You can also use a custom algorithm for training and define your own metrics. * For more information, see Define metrics and environment variables. * @return Returns a reference to this object so that method calls can be chained together. */ public FinalHyperParameterTuningJobObjectiveMetric withMetricName(String metricName) { setMetricName(metricName); return this; } /** ** The value of the objective metric. *
* * @param value * The value of the objective metric. */ public void setValue(Float value) { this.value = value; } /** ** The value of the objective metric. *
* * @return The value of the objective metric. */ public Float getValue() { return this.value; } /** ** The value of the objective metric. *
* * @param value * The value of the objective metric. * @return Returns a reference to this object so that method calls can be chained together. */ public FinalHyperParameterTuningJobObjectiveMetric withValue(Float value) { setValue(value); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getType() != null) sb.append("Type: ").append(getType()).append(","); if (getMetricName() != null) sb.append("MetricName: ").append(getMetricName()).append(","); if (getValue() != null) sb.append("Value: ").append(getValue()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof FinalHyperParameterTuningJobObjectiveMetric == false) return false; FinalHyperParameterTuningJobObjectiveMetric other = (FinalHyperParameterTuningJobObjectiveMetric) obj; if (other.getType() == null ^ this.getType() == null) return false; if (other.getType() != null && other.getType().equals(this.getType()) == false) return false; if (other.getMetricName() == null ^ this.getMetricName() == null) return false; if (other.getMetricName() != null && other.getMetricName().equals(this.getMetricName()) == false) return false; if (other.getValue() == null ^ this.getValue() == null) return false; if (other.getValue() != null && other.getValue().equals(this.getValue()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getType() == null) ? 0 : getType().hashCode()); hashCode = prime * hashCode + ((getMetricName() == null) ? 0 : getMetricName().hashCode()); hashCode = prime * hashCode + ((getValue() == null) ? 0 : getValue().hashCode()); return hashCode; } @Override public FinalHyperParameterTuningJobObjectiveMetric clone() { try { return (FinalHyperParameterTuningJobObjectiveMetric) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.FinalHyperParameterTuningJobObjectiveMetricMarshaller.getInstance().marshall(this, protocolMarshaller); } }