/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *
* Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and * the framework in which the model was trained. *
* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class InputConfig implements Serializable, Cloneable, StructuredPojo { /** ** The S3 path where the model artifacts, which result from model training, are stored. This path must point to a * single gzip compressed tar archive (.tar.gz suffix). *
*/ private String s3Uri; /** *
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The
* data inputs are Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
* dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
* format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
* format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
* required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
* order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
* using a dictionary format for your trained model or you can specify the shape only using a list format. The
* dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
* the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
TargetDevice
* (ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
* static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
* interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
* all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both Range
* Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
* Image input type requires additional input parameters such as bias
and scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
* and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
* key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
* Identifies the framework in which the model was trained. For example: TENSORFLOW. *
*/ private String framework; /** ** Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and * TensorFlow Lite frameworks. *
** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types * and Frameworks and Edge Supported * Frameworks. *
*/ private String frameworkVersion; /** ** The S3 path where the model artifacts, which result from model training, are stored. This path must point to a * single gzip compressed tar archive (.tar.gz suffix). *
* * @param s3Uri * The S3 path where the model artifacts, which result from model training, are stored. This path must point * to a single gzip compressed tar archive (.tar.gz suffix). */ public void setS3Uri(String s3Uri) { this.s3Uri = s3Uri; } /** ** The S3 path where the model artifacts, which result from model training, are stored. This path must point to a * single gzip compressed tar archive (.tar.gz suffix). *
* * @return The S3 path where the model artifacts, which result from model training, are stored. This path must point * to a single gzip compressed tar archive (.tar.gz suffix). */ public String getS3Uri() { return this.s3Uri; } /** ** The S3 path where the model artifacts, which result from model training, are stored. This path must point to a * single gzip compressed tar archive (.tar.gz suffix). *
* * @param s3Uri * The S3 path where the model artifacts, which result from model training, are stored. This path must point * to a single gzip compressed tar archive (.tar.gz suffix). * @return Returns a reference to this object so that method calls can be chained together. */ public InputConfig withS3Uri(String s3Uri) { setS3Uri(s3Uri); return this; } /** *
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The
* data inputs are Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
* dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
* format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
* format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
* required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
* order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
* using a dictionary format for your trained model or you can specify the shape only using a list format. The
* dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
* the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
TargetDevice
* (ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
* static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
* interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
* all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both Range
* Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
* Image input type requires additional input parameters such as bias
and scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
* and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
* key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
* using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
* dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
* The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
* inputs in order using a dictionary format for your trained model. The dictionary formats required for the
* console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
* order using a dictionary format for your trained model or you can specify the shape only using a list
* format. The dictionary formats required for the console and CLI are different. The list formats for the
* console and CLI are the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
* TargetDevice
(ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
* addition to static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
* specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
* enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both
* Range Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be
* Image. Image input type requires additional input parameters such as bias
and
* scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from
* signature_def_key
and the input model shapes for DataInputConfig
. Specify the
* signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
* def key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The
* data inputs are Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
* dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
* format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
* format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
* required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
* order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
* using a dictionary format for your trained model or you can specify the shape only using a list format. The
* dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
* the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
TargetDevice
* (ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
* static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
* interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
* all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both Range
* Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
* Image input type requires additional input parameters such as bias
and scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
* and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
* key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
* using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
* dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in
* NHWC (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first)
* format. The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
* inputs in order using a dictionary format for your trained model. The dictionary formats required for the
* console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
* order using a dictionary format for your trained model or you can specify the shape only using a list
* format. The dictionary formats required for the console and CLI are different. The list formats for the
* console and CLI are the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
* TargetDevice
(ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
* addition to static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
* specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
* enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both
* Range Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default,
* the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to
* be Image. Image input type requires additional input parameters such as bias
and
* scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from
* signature_def_key
and the input model shapes for DataInputConfig
. Specify the
* signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
* def key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The
* data inputs are Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
* dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
* format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
* format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
* required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
* order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
* using a dictionary format for your trained model or you can specify the shape only using a list format. The
* dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
* the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
TargetDevice
* (ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
* static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
* interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
* all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both Range
* Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
* Image input type requires additional input parameters such as bias
and scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
* and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
* key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
Framework
specific.
*
* TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
* using a dictionary format for your trained model. The dictionary formats required for the console and CLI
* are different.
*
* Examples for one input: *
*
* If using the console, {"input":[1,1024,1024,3]}
*
* If using the CLI, {\"input\":[1,1024,1024,3]}
*
* Examples for two inputs: *
*
* If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
*
* If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
*
* KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
* dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
* (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
* The dictionary formats required for the console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"input_1":[1,3,224,224]}
*
* If using the CLI, {\"input_1\":[1,3,224,224]}
*
* Examples for two inputs: *
*
* If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
*
* If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
*
* MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
* inputs in order using a dictionary format for your trained model. The dictionary formats required for the
* console and CLI are different.
*
* Examples for one input: *
*
* If using the console, {"data":[1,3,1024,1024]}
*
* If using the CLI, {\"data\":[1,3,1024,1024]}
*
* Examples for two inputs: *
*
* If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
*
* If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
*
* PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
* order using a dictionary format for your trained model or you can specify the shape only using a list
* format. The dictionary formats required for the console and CLI are different. The list formats for the
* console and CLI are the same.
*
* Examples for one input in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224]}
*
* Example for one input in list format: [[1,3,224,224]]
*
* Examples for two inputs in dictionary format: *
*
* If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
*
* If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
*
* Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
*
* XGBOOST
: input data name and shape are not needed.
*
* DataInputConfig
supports the following parameters for CoreML
* TargetDevice
(ML Model format):
*
* shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
* addition to static input shapes, CoreML converter supports Flexible input shapes:
*
* Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
* specific interval in that dimension, for example:
* {"input_1": {"shape": ["1..10", 224, 224, 3]}}
*
* Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
* enumerate all supported input shapes, for example:
* {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
*
* default_shape
: Default input shape. You can set a default shape during conversion for both
* Range Dimension and Enumerated Shapes. For example
* {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
*
* type
: Input type. Allowed values: Image
and Tensor
. By default, the
* converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be
* Image. Image input type requires additional input parameters such as bias
and
* scale
.
*
* bias
: If the input type is an Image, you need to provide the bias vector.
*
* scale
: If the input type is an Image, you need to provide a scale factor.
*
* CoreML ClassifierConfig
parameters can be specified using OutputConfig
* CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion
* examples:
*
* Tensor type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
*
* Tensor type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
*
* Image type input: *
*
* "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Image type input without input name (PyTorch): *
*
* "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
*
* "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*
* Depending on the model format, DataInputConfig
requires the following parameters for
* ml_eia2
OutputConfig:TargetDevice.
*
* For TensorFlow models saved in the SavedModel format, specify the input names from
* signature_def_key
and the input model shapes for DataInputConfig
. Specify the
* signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
* def key. For example:
*
* "DataInputConfig": {"inputs": [1, 224, 224, 3]}
*
* "CompilerOptions": {"signature_def_key": "serving_custom"}
*
* For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
* DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
*
* "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
*
* "CompilerOptions": {"output_names": ["output_tensor:0"]}
*
* Identifies the framework in which the model was trained. For example: TENSORFLOW. *
* * @param framework * Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework */ public void setFramework(String framework) { this.framework = framework; } /** ** Identifies the framework in which the model was trained. For example: TENSORFLOW. *
* * @return Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework */ public String getFramework() { return this.framework; } /** ** Identifies the framework in which the model was trained. For example: TENSORFLOW. *
* * @param framework * Identifies the framework in which the model was trained. For example: TENSORFLOW. * @return Returns a reference to this object so that method calls can be chained together. * @see Framework */ public InputConfig withFramework(String framework) { setFramework(framework); return this; } /** ** Identifies the framework in which the model was trained. For example: TENSORFLOW. *
* * @param framework * Identifies the framework in which the model was trained. For example: TENSORFLOW. * @return Returns a reference to this object so that method calls can be chained together. * @see Framework */ public InputConfig withFramework(Framework framework) { this.framework = framework.toString(); return this; } /** ** Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and * TensorFlow Lite frameworks. *
** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types * and Frameworks and Edge Supported * Frameworks. *
* * @param frameworkVersion * Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, * TensorFlow and TensorFlow Lite frameworks. ** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance * Types and Frameworks and Edge * Supported Frameworks. */ public void setFrameworkVersion(String frameworkVersion) { this.frameworkVersion = frameworkVersion; } /** *
* Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and * TensorFlow Lite frameworks. *
** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types * and Frameworks and Edge Supported * Frameworks. *
* * @return Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, * TensorFlow and TensorFlow Lite frameworks. ** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance * Types and Frameworks and Edge * Supported Frameworks. */ public String getFrameworkVersion() { return this.frameworkVersion; } /** *
* Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and * TensorFlow Lite frameworks. *
** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types * and Frameworks and Edge Supported * Frameworks. *
* * @param frameworkVersion * Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, * TensorFlow and TensorFlow Lite frameworks. ** For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance * Types and Frameworks and Edge * Supported Frameworks. * @return Returns a reference to this object so that method calls can be chained together. */ public InputConfig withFrameworkVersion(String frameworkVersion) { setFrameworkVersion(frameworkVersion); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getS3Uri() != null) sb.append("S3Uri: ").append(getS3Uri()).append(","); if (getDataInputConfig() != null) sb.append("DataInputConfig: ").append(getDataInputConfig()).append(","); if (getFramework() != null) sb.append("Framework: ").append(getFramework()).append(","); if (getFrameworkVersion() != null) sb.append("FrameworkVersion: ").append(getFrameworkVersion()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof InputConfig == false) return false; InputConfig other = (InputConfig) obj; if (other.getS3Uri() == null ^ this.getS3Uri() == null) return false; if (other.getS3Uri() != null && other.getS3Uri().equals(this.getS3Uri()) == false) return false; if (other.getDataInputConfig() == null ^ this.getDataInputConfig() == null) return false; if (other.getDataInputConfig() != null && other.getDataInputConfig().equals(this.getDataInputConfig()) == false) return false; if (other.getFramework() == null ^ this.getFramework() == null) return false; if (other.getFramework() != null && other.getFramework().equals(this.getFramework()) == false) return false; if (other.getFrameworkVersion() == null ^ this.getFrameworkVersion() == null) return false; if (other.getFrameworkVersion() != null && other.getFrameworkVersion().equals(this.getFrameworkVersion()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getS3Uri() == null) ? 0 : getS3Uri().hashCode()); hashCode = prime * hashCode + ((getDataInputConfig() == null) ? 0 : getDataInputConfig().hashCode()); hashCode = prime * hashCode + ((getFramework() == null) ? 0 : getFramework().hashCode()); hashCode = prime * hashCode + ((getFrameworkVersion() == null) ? 0 : getFrameworkVersion().hashCode()); return hashCode; } @Override public InputConfig clone() { try { return (InputConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.InputConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }