/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *
* Specifies mandatory fields for running an Inference Recommender job directly in the CreateInferenceRecommendationsJob API. The fields specified in ContainerConfig
override the
* corresponding fields in the model package. Use ContainerConfig
if you want to specify these fields for
* the recommendation job but don't want to edit them in your model package.
*
* The machine learning domain of the model and its components. *
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*
* The machine learning task that the model accomplishes. *
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*
* The machine learning framework of the container image. *
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*
* The framework version of the container image. *
*/ private String frameworkVersion; /** *
* Specifies the SamplePayloadUrl
and all other sample payload-related fields.
*
* The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that * matches your model. *
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*
* A list of the instance types that are used to generate inferences in real-time. *
*/ private java.util.List* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This * field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. *
*/ private String dataInputConfig; /** ** The endpoint type to receive recommendations for. By default this is null, and the results of the inference * recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for * this field, you can receive a longer list of benchmarks for the desired endpoint type. *
*/ private String supportedEndpointType; /** ** The machine learning domain of the model and its components. *
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*/
public void setDomain(String domain) {
this.domain = domain;
}
/**
*
* The machine learning domain of the model and its components. *
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*/
public String getDomain() {
return this.domain;
}
/**
*
* The machine learning domain of the model and its components. *
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
*
* Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
* @return Returns a reference to this object so that method calls can be chained together.
*/
public RecommendationJobContainerConfig withDomain(String domain) {
setDomain(domain);
return this;
}
/**
*
* The machine learning task that the model accomplishes. *
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*/
public void setTask(String task) {
this.task = task;
}
/**
*
* The machine learning task that the model accomplishes. *
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*/
public String getTask() {
return this.task;
}
/**
*
* The machine learning task that the model accomplishes. *
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
*
* Valid Values:
* IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
* @return Returns a reference to this object so that method calls can be chained together.
*/
public RecommendationJobContainerConfig withTask(String task) {
setTask(task);
return this;
}
/**
*
* The machine learning framework of the container image. *
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*/
public void setFramework(String framework) {
this.framework = framework;
}
/**
*
* The machine learning framework of the container image. *
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*/
public String getFramework() {
return this.framework;
}
/**
*
* The machine learning framework of the container image. *
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
*
* Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
* @return Returns a reference to this object so that method calls can be chained together.
*/
public RecommendationJobContainerConfig withFramework(String framework) {
setFramework(framework);
return this;
}
/**
*
* The framework version of the container image. *
* * @param frameworkVersion * The framework version of the container image. */ public void setFrameworkVersion(String frameworkVersion) { this.frameworkVersion = frameworkVersion; } /** ** The framework version of the container image. *
* * @return The framework version of the container image. */ public String getFrameworkVersion() { return this.frameworkVersion; } /** ** The framework version of the container image. *
* * @param frameworkVersion * The framework version of the container image. * @return Returns a reference to this object so that method calls can be chained together. */ public RecommendationJobContainerConfig withFrameworkVersion(String frameworkVersion) { setFrameworkVersion(frameworkVersion); return this; } /** *
* Specifies the SamplePayloadUrl
and all other sample payload-related fields.
*
SamplePayloadUrl
and all other sample payload-related fields.
*/
public void setPayloadConfig(RecommendationJobPayloadConfig payloadConfig) {
this.payloadConfig = payloadConfig;
}
/**
*
* Specifies the SamplePayloadUrl
and all other sample payload-related fields.
*
SamplePayloadUrl
and all other sample payload-related fields.
*/
public RecommendationJobPayloadConfig getPayloadConfig() {
return this.payloadConfig;
}
/**
*
* Specifies the SamplePayloadUrl
and all other sample payload-related fields.
*
SamplePayloadUrl
and all other sample payload-related fields.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public RecommendationJobContainerConfig withPayloadConfig(RecommendationJobPayloadConfig payloadConfig) {
setPayloadConfig(payloadConfig);
return this;
}
/**
* * The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that * matches your model. *
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*/
public void setNearestModelName(String nearestModelName) {
this.nearestModelName = nearestModelName;
}
/**
*
* The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that * matches your model. *
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*/
public String getNearestModelName() {
return this.nearestModelName;
}
/**
*
* The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that * matches your model. *
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
*
* Valid Values:
* efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
* @return Returns a reference to this object so that method calls can be chained together.
*/
public RecommendationJobContainerConfig withNearestModelName(String nearestModelName) {
setNearestModelName(nearestModelName);
return this;
}
/**
*
* A list of the instance types that are used to generate inferences in real-time. *
* * @return A list of the instance types that are used to generate inferences in real-time. */ public java.util.List* A list of the instance types that are used to generate inferences in real-time. *
* * @param supportedInstanceTypes * A list of the instance types that are used to generate inferences in real-time. */ public void setSupportedInstanceTypes(java.util.Collection* A list of the instance types that are used to generate inferences in real-time. *
** NOTE: This method appends the values to the existing list (if any). Use * {@link #setSupportedInstanceTypes(java.util.Collection)} or * {@link #withSupportedInstanceTypes(java.util.Collection)} if you want to override the existing values. *
* * @param supportedInstanceTypes * A list of the instance types that are used to generate inferences in real-time. * @return Returns a reference to this object so that method calls can be chained together. */ public RecommendationJobContainerConfig withSupportedInstanceTypes(String... supportedInstanceTypes) { if (this.supportedInstanceTypes == null) { setSupportedInstanceTypes(new java.util.ArrayList* A list of the instance types that are used to generate inferences in real-time. *
* * @param supportedInstanceTypes * A list of the instance types that are used to generate inferences in real-time. * @return Returns a reference to this object so that method calls can be chained together. */ public RecommendationJobContainerConfig withSupportedInstanceTypes(java.util.Collection* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This * field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. *
* * @param dataInputConfig * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary * form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. */ public void setDataInputConfig(String dataInputConfig) { this.dataInputConfig = dataInputConfig; } /** ** Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This * field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. *
* * @return Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary * form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. */ public String getDataInputConfig() { return this.dataInputConfig; } /** ** Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This * field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. *
* * @param dataInputConfig * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary * form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig. * @return Returns a reference to this object so that method calls can be chained together. */ public RecommendationJobContainerConfig withDataInputConfig(String dataInputConfig) { setDataInputConfig(dataInputConfig); return this; } /** ** The endpoint type to receive recommendations for. By default this is null, and the results of the inference * recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for * this field, you can receive a longer list of benchmarks for the desired endpoint type. *
* * @param supportedEndpointType * The endpoint type to receive recommendations for. By default this is null, and the results of the * inference recommendation job return a combined list of both real-time and serverless benchmarks. By * specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint * type. * @see RecommendationJobSupportedEndpointType */ public void setSupportedEndpointType(String supportedEndpointType) { this.supportedEndpointType = supportedEndpointType; } /** ** The endpoint type to receive recommendations for. By default this is null, and the results of the inference * recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for * this field, you can receive a longer list of benchmarks for the desired endpoint type. *
* * @return The endpoint type to receive recommendations for. By default this is null, and the results of the * inference recommendation job return a combined list of both real-time and serverless benchmarks. By * specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint * type. * @see RecommendationJobSupportedEndpointType */ public String getSupportedEndpointType() { return this.supportedEndpointType; } /** ** The endpoint type to receive recommendations for. By default this is null, and the results of the inference * recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for * this field, you can receive a longer list of benchmarks for the desired endpoint type. *
* * @param supportedEndpointType * The endpoint type to receive recommendations for. By default this is null, and the results of the * inference recommendation job return a combined list of both real-time and serverless benchmarks. By * specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint * type. * @return Returns a reference to this object so that method calls can be chained together. * @see RecommendationJobSupportedEndpointType */ public RecommendationJobContainerConfig withSupportedEndpointType(String supportedEndpointType) { setSupportedEndpointType(supportedEndpointType); return this; } /** ** The endpoint type to receive recommendations for. By default this is null, and the results of the inference * recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for * this field, you can receive a longer list of benchmarks for the desired endpoint type. *
* * @param supportedEndpointType * The endpoint type to receive recommendations for. By default this is null, and the results of the * inference recommendation job return a combined list of both real-time and serverless benchmarks. By * specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint * type. * @return Returns a reference to this object so that method calls can be chained together. * @see RecommendationJobSupportedEndpointType */ public RecommendationJobContainerConfig withSupportedEndpointType(RecommendationJobSupportedEndpointType supportedEndpointType) { this.supportedEndpointType = supportedEndpointType.toString(); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getDomain() != null) sb.append("Domain: ").append(getDomain()).append(","); if (getTask() != null) sb.append("Task: ").append(getTask()).append(","); if (getFramework() != null) sb.append("Framework: ").append(getFramework()).append(","); if (getFrameworkVersion() != null) sb.append("FrameworkVersion: ").append(getFrameworkVersion()).append(","); if (getPayloadConfig() != null) sb.append("PayloadConfig: ").append(getPayloadConfig()).append(","); if (getNearestModelName() != null) sb.append("NearestModelName: ").append(getNearestModelName()).append(","); if (getSupportedInstanceTypes() != null) sb.append("SupportedInstanceTypes: ").append(getSupportedInstanceTypes()).append(","); if (getDataInputConfig() != null) sb.append("DataInputConfig: ").append(getDataInputConfig()).append(","); if (getSupportedEndpointType() != null) sb.append("SupportedEndpointType: ").append(getSupportedEndpointType()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof RecommendationJobContainerConfig == false) return false; RecommendationJobContainerConfig other = (RecommendationJobContainerConfig) obj; if (other.getDomain() == null ^ this.getDomain() == null) return false; if (other.getDomain() != null && other.getDomain().equals(this.getDomain()) == false) return false; if (other.getTask() == null ^ this.getTask() == null) return false; if (other.getTask() != null && other.getTask().equals(this.getTask()) == false) return false; if (other.getFramework() == null ^ this.getFramework() == null) return false; if (other.getFramework() != null && other.getFramework().equals(this.getFramework()) == false) return false; if (other.getFrameworkVersion() == null ^ this.getFrameworkVersion() == null) return false; if (other.getFrameworkVersion() != null && other.getFrameworkVersion().equals(this.getFrameworkVersion()) == false) return false; if (other.getPayloadConfig() == null ^ this.getPayloadConfig() == null) return false; if (other.getPayloadConfig() != null && other.getPayloadConfig().equals(this.getPayloadConfig()) == false) return false; if (other.getNearestModelName() == null ^ this.getNearestModelName() == null) return false; if (other.getNearestModelName() != null && other.getNearestModelName().equals(this.getNearestModelName()) == false) return false; if (other.getSupportedInstanceTypes() == null ^ this.getSupportedInstanceTypes() == null) return false; if (other.getSupportedInstanceTypes() != null && other.getSupportedInstanceTypes().equals(this.getSupportedInstanceTypes()) == false) return false; if (other.getDataInputConfig() == null ^ this.getDataInputConfig() == null) return false; if (other.getDataInputConfig() != null && other.getDataInputConfig().equals(this.getDataInputConfig()) == false) return false; if (other.getSupportedEndpointType() == null ^ this.getSupportedEndpointType() == null) return false; if (other.getSupportedEndpointType() != null && other.getSupportedEndpointType().equals(this.getSupportedEndpointType()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getDomain() == null) ? 0 : getDomain().hashCode()); hashCode = prime * hashCode + ((getTask() == null) ? 0 : getTask().hashCode()); hashCode = prime * hashCode + ((getFramework() == null) ? 0 : getFramework().hashCode()); hashCode = prime * hashCode + ((getFrameworkVersion() == null) ? 0 : getFrameworkVersion().hashCode()); hashCode = prime * hashCode + ((getPayloadConfig() == null) ? 0 : getPayloadConfig().hashCode()); hashCode = prime * hashCode + ((getNearestModelName() == null) ? 0 : getNearestModelName().hashCode()); hashCode = prime * hashCode + ((getSupportedInstanceTypes() == null) ? 0 : getSupportedInstanceTypes().hashCode()); hashCode = prime * hashCode + ((getDataInputConfig() == null) ? 0 : getDataInputConfig().hashCode()); hashCode = prime * hashCode + ((getSupportedEndpointType() == null) ? 0 : getSupportedEndpointType().hashCode()); return hashCode; } @Override public RecommendationJobContainerConfig clone() { try { return (RecommendationJobContainerConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.RecommendationJobContainerConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }