/* * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with * the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions * and limitations under the License. */ package com.amazonaws.services.sagemaker.model; import java.io.Serializable; import javax.annotation.Generated; import com.amazonaws.protocol.StructuredPojo; import com.amazonaws.protocol.ProtocolMarshaller; /** *
* Defines the input needed to run a training job using the algorithm. *
* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class TrainingJobDefinition implements Serializable, Cloneable, StructuredPojo { private String trainingInputMode; /** ** The hyperparameters used for the training job. *
*/ private java.util.Map
* An array of Channel
objects, each of which specifies an input source.
*
* the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. *
*/ private OutputDataConfig outputDataConfig; /** ** The resources, including the ML compute instances and ML storage volumes, to use for model training. *
*/ private ResourceConfig resourceConfig; /** ** Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training * job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap * model training costs. *
** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts. *
*/ private StoppingCondition stoppingCondition; /** * @param trainingInputMode * @see TrainingInputMode */ public void setTrainingInputMode(String trainingInputMode) { this.trainingInputMode = trainingInputMode; } /** * @return * @see TrainingInputMode */ public String getTrainingInputMode() { return this.trainingInputMode; } /** * @param trainingInputMode * @return Returns a reference to this object so that method calls can be chained together. * @see TrainingInputMode */ public TrainingJobDefinition withTrainingInputMode(String trainingInputMode) { setTrainingInputMode(trainingInputMode); return this; } /** * @param trainingInputMode * @return Returns a reference to this object so that method calls can be chained together. * @see TrainingInputMode */ public TrainingJobDefinition withTrainingInputMode(TrainingInputMode trainingInputMode) { this.trainingInputMode = trainingInputMode.toString(); return this; } /** ** The hyperparameters used for the training job. *
* * @return The hyperparameters used for the training job. */ public java.util.Map* The hyperparameters used for the training job. *
* * @param hyperParameters * The hyperparameters used for the training job. */ public void setHyperParameters(java.util.Map* The hyperparameters used for the training job. *
* * @param hyperParameters * The hyperparameters used for the training job. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingJobDefinition withHyperParameters(java.util.Map
* An array of Channel
objects, each of which specifies an input source.
*
Channel
objects, each of which specifies an input source.
*/
public java.util.List
* An array of Channel
objects, each of which specifies an input source.
*
Channel
objects, each of which specifies an input source.
*/
public void setInputDataConfig(java.util.Collection
* An array of Channel
objects, each of which specifies an input source.
*
* NOTE: This method appends the values to the existing list (if any). Use * {@link #setInputDataConfig(java.util.Collection)} or {@link #withInputDataConfig(java.util.Collection)} if you * want to override the existing values. *
* * @param inputDataConfig * An array ofChannel
objects, each of which specifies an input source.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public TrainingJobDefinition withInputDataConfig(Channel... inputDataConfig) {
if (this.inputDataConfig == null) {
setInputDataConfig(new java.util.ArrayList
* An array of Channel
objects, each of which specifies an input source.
*
Channel
objects, each of which specifies an input source.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public TrainingJobDefinition withInputDataConfig(java.util.Collection* the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. *
* * @param outputDataConfig * the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. */ public void setOutputDataConfig(OutputDataConfig outputDataConfig) { this.outputDataConfig = outputDataConfig; } /** ** the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. *
* * @return the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. */ public OutputDataConfig getOutputDataConfig() { return this.outputDataConfig; } /** ** the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. *
* * @param outputDataConfig * the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the * artifacts. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingJobDefinition withOutputDataConfig(OutputDataConfig outputDataConfig) { setOutputDataConfig(outputDataConfig); return this; } /** ** The resources, including the ML compute instances and ML storage volumes, to use for model training. *
* * @param resourceConfig * The resources, including the ML compute instances and ML storage volumes, to use for model training. */ public void setResourceConfig(ResourceConfig resourceConfig) { this.resourceConfig = resourceConfig; } /** ** The resources, including the ML compute instances and ML storage volumes, to use for model training. *
* * @return The resources, including the ML compute instances and ML storage volumes, to use for model training. */ public ResourceConfig getResourceConfig() { return this.resourceConfig; } /** ** The resources, including the ML compute instances and ML storage volumes, to use for model training. *
* * @param resourceConfig * The resources, including the ML compute instances and ML storage volumes, to use for model training. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingJobDefinition withResourceConfig(ResourceConfig resourceConfig) { setResourceConfig(resourceConfig); return this; } /** ** Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training * job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap * model training costs. *
** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts. *
* * @param stoppingCondition * Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot * training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use * this API to cap model training costs. ** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 * seconds. Algorithms can use this 120-second window to save the model artifacts. */ public void setStoppingCondition(StoppingCondition stoppingCondition) { this.stoppingCondition = stoppingCondition; } /** *
* Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training * job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap * model training costs. *
** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts. *
* * @return Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot * training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use * this API to cap model training costs. ** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 * seconds. Algorithms can use this 120-second window to save the model artifacts. */ public StoppingCondition getStoppingCondition() { return this.stoppingCondition; } /** *
* Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training * job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap * model training costs. *
** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. * Algorithms can use this 120-second window to save the model artifacts. *
* * @param stoppingCondition * Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot * training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use * this API to cap model training costs. ** To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 * seconds. Algorithms can use this 120-second window to save the model artifacts. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingJobDefinition withStoppingCondition(StoppingCondition stoppingCondition) { setStoppingCondition(stoppingCondition); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getTrainingInputMode() != null) sb.append("TrainingInputMode: ").append(getTrainingInputMode()).append(","); if (getHyperParameters() != null) sb.append("HyperParameters: ").append(getHyperParameters()).append(","); if (getInputDataConfig() != null) sb.append("InputDataConfig: ").append(getInputDataConfig()).append(","); if (getOutputDataConfig() != null) sb.append("OutputDataConfig: ").append(getOutputDataConfig()).append(","); if (getResourceConfig() != null) sb.append("ResourceConfig: ").append(getResourceConfig()).append(","); if (getStoppingCondition() != null) sb.append("StoppingCondition: ").append(getStoppingCondition()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof TrainingJobDefinition == false) return false; TrainingJobDefinition other = (TrainingJobDefinition) obj; if (other.getTrainingInputMode() == null ^ this.getTrainingInputMode() == null) return false; if (other.getTrainingInputMode() != null && other.getTrainingInputMode().equals(this.getTrainingInputMode()) == false) return false; if (other.getHyperParameters() == null ^ this.getHyperParameters() == null) return false; if (other.getHyperParameters() != null && other.getHyperParameters().equals(this.getHyperParameters()) == false) return false; if (other.getInputDataConfig() == null ^ this.getInputDataConfig() == null) return false; if (other.getInputDataConfig() != null && other.getInputDataConfig().equals(this.getInputDataConfig()) == false) return false; if (other.getOutputDataConfig() == null ^ this.getOutputDataConfig() == null) return false; if (other.getOutputDataConfig() != null && other.getOutputDataConfig().equals(this.getOutputDataConfig()) == false) return false; if (other.getResourceConfig() == null ^ this.getResourceConfig() == null) return false; if (other.getResourceConfig() != null && other.getResourceConfig().equals(this.getResourceConfig()) == false) return false; if (other.getStoppingCondition() == null ^ this.getStoppingCondition() == null) return false; if (other.getStoppingCondition() != null && other.getStoppingCondition().equals(this.getStoppingCondition()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getTrainingInputMode() == null) ? 0 : getTrainingInputMode().hashCode()); hashCode = prime * hashCode + ((getHyperParameters() == null) ? 0 : getHyperParameters().hashCode()); hashCode = prime * hashCode + ((getInputDataConfig() == null) ? 0 : getInputDataConfig().hashCode()); hashCode = prime * hashCode + ((getOutputDataConfig() == null) ? 0 : getOutputDataConfig().hashCode()); hashCode = prime * hashCode + ((getResourceConfig() == null) ? 0 : getResourceConfig().hashCode()); hashCode = prime * hashCode + ((getStoppingCondition() == null) ? 0 : getStoppingCondition().hashCode()); return hashCode; } @Override public TrainingJobDefinition clone() { try { return (TrainingJobDefinition) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.TrainingJobDefinitionMarshaller.getInstance().marshall(this, protocolMarshaller); } }