/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
/*
* Do not modify this file. This file is generated from the machinelearning-2014-12-12.normal.json service model.
*/
using System;
using System.Collections.Generic;
using System.Xml.Serialization;
using System.Text;
using System.IO;
using System.Net;
using Amazon.Runtime;
using Amazon.Runtime.Internal;
namespace Amazon.MachineLearning.Model
{
///
/// Container for the parameters to the CreateEvaluation operation.
/// Creates a new Evaluation
of an MLModel
. An MLModel
/// is evaluated on a set of observations associated to a DataSource
. Like
/// a DataSource
for an MLModel
, the DataSource
/// for an Evaluation
contains values for the Target Variable
.
/// The Evaluation
compares the predicted result for each observation to
/// the actual outcome and provides a summary so that you know how effective the MLModel
/// functions on the test data. Evaluation generates a relevant performance metric, such
/// as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType
:
/// BINARY
, REGRESSION
or MULTICLASS
.
///
///
///
/// CreateEvaluation
is an asynchronous operation. In response to CreateEvaluation
,
/// Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status
/// to PENDING
. After the Evaluation
is created and ready for
/// use, Amazon ML sets the status to COMPLETED
.
///
///
///
/// You can use the GetEvaluation
operation to check progress of the evaluation
/// during the creation operation.
///
///
public partial class CreateEvaluationRequest : AmazonMachineLearningRequest
{
private string _evaluationDataSourceId;
private string _evaluationId;
private string _evaluationName;
private string _mlModelId;
///
/// Gets and sets the property EvaluationDataSourceId.
///
/// The ID of the DataSource
for the evaluation. The schema of the DataSource
/// must match the schema used to create the MLModel
.
///
///
[AWSProperty(Required=true, Min=1, Max=64)]
public string EvaluationDataSourceId
{
get { return this._evaluationDataSourceId; }
set { this._evaluationDataSourceId = value; }
}
// Check to see if EvaluationDataSourceId property is set
internal bool IsSetEvaluationDataSourceId()
{
return this._evaluationDataSourceId != null;
}
///
/// Gets and sets the property EvaluationId.
///
/// A user-supplied ID that uniquely identifies the Evaluation
.
///
///
[AWSProperty(Required=true, Min=1, Max=64)]
public string EvaluationId
{
get { return this._evaluationId; }
set { this._evaluationId = value; }
}
// Check to see if EvaluationId property is set
internal bool IsSetEvaluationId()
{
return this._evaluationId != null;
}
///
/// Gets and sets the property EvaluationName.
///
/// A user-supplied name or description of the Evaluation
.
///
///
[AWSProperty(Max=1024)]
public string EvaluationName
{
get { return this._evaluationName; }
set { this._evaluationName = value; }
}
// Check to see if EvaluationName property is set
internal bool IsSetEvaluationName()
{
return this._evaluationName != null;
}
///
/// Gets and sets the property MLModelId.
///
/// The ID of the MLModel
to evaluate.
///
///
///
/// The schema used in creating the MLModel
must match the schema of the
/// DataSource
used in the Evaluation
.
///
///
[AWSProperty(Required=true, Min=1, Max=64)]
public string MLModelId
{
get { return this._mlModelId; }
set { this._mlModelId = value; }
}
// Check to see if MLModelId property is set
internal bool IsSetMLModelId()
{
return this._mlModelId != null;
}
}
}