/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ /* * Do not modify this file. This file is generated from the machinelearning-2014-12-12.normal.json service model. */ using System; using System.Collections.Generic; using System.Xml.Serialization; using System.Text; using System.IO; using System.Net; using Amazon.Runtime; using Amazon.Runtime.Internal; namespace Amazon.MachineLearning.Model { /// /// Container for the parameters to the CreateEvaluation operation. /// Creates a new Evaluation of an MLModel. An MLModel /// is evaluated on a set of observations associated to a DataSource. Like /// a DataSource for an MLModel, the DataSource /// for an Evaluation contains values for the Target Variable. /// The Evaluation compares the predicted result for each observation to /// the actual outcome and provides a summary so that you know how effective the MLModel /// functions on the test data. Evaluation generates a relevant performance metric, such /// as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType: /// BINARY, REGRESSION or MULTICLASS. /// /// /// /// CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, /// Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status /// to PENDING. After the Evaluation is created and ready for /// use, Amazon ML sets the status to COMPLETED. /// /// /// /// You can use the GetEvaluation operation to check progress of the evaluation /// during the creation operation. /// /// public partial class CreateEvaluationRequest : AmazonMachineLearningRequest { private string _evaluationDataSourceId; private string _evaluationId; private string _evaluationName; private string _mlModelId; /// /// Gets and sets the property EvaluationDataSourceId. /// /// The ID of the DataSource for the evaluation. The schema of the DataSource /// must match the schema used to create the MLModel. /// /// [AWSProperty(Required=true, Min=1, Max=64)] public string EvaluationDataSourceId { get { return this._evaluationDataSourceId; } set { this._evaluationDataSourceId = value; } } // Check to see if EvaluationDataSourceId property is set internal bool IsSetEvaluationDataSourceId() { return this._evaluationDataSourceId != null; } /// /// Gets and sets the property EvaluationId. /// /// A user-supplied ID that uniquely identifies the Evaluation. /// /// [AWSProperty(Required=true, Min=1, Max=64)] public string EvaluationId { get { return this._evaluationId; } set { this._evaluationId = value; } } // Check to see if EvaluationId property is set internal bool IsSetEvaluationId() { return this._evaluationId != null; } /// /// Gets and sets the property EvaluationName. /// /// A user-supplied name or description of the Evaluation. /// /// [AWSProperty(Max=1024)] public string EvaluationName { get { return this._evaluationName; } set { this._evaluationName = value; } } // Check to see if EvaluationName property is set internal bool IsSetEvaluationName() { return this._evaluationName != null; } /// /// Gets and sets the property MLModelId. /// /// The ID of the MLModel to evaluate. /// /// /// /// The schema used in creating the MLModel must match the schema of the /// DataSource used in the Evaluation. /// /// [AWSProperty(Required=true, Min=1, Max=64)] public string MLModelId { get { return this._mlModelId; } set { this._mlModelId = value; } } // Check to see if MLModelId property is set internal bool IsSetMLModelId() { return this._mlModelId != null; } } }