/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ /* * Do not modify this file. This file is generated from the machinelearning-2014-12-12.normal.json service model. */ using System; using System.Collections.Generic; using System.Xml.Serialization; using System.Text; using System.IO; using System.Net; using Amazon.Runtime; using Amazon.Runtime.Internal; namespace Amazon.MachineLearning.Model { /// /// Container for the parameters to the CreateMLModel operation. /// Creates a new MLModel using the DataSource and the recipe /// as information sources. /// /// /// /// An MLModel is nearly immutable. Users can update only the MLModelName /// and the ScoreThreshold in an MLModel without creating a /// new MLModel. /// /// /// /// CreateMLModel is an asynchronous operation. In response to CreateMLModel, /// Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel /// status to PENDING. After the MLModel has been created and /// ready is for use, Amazon ML sets the status to COMPLETED. /// /// /// /// You can use the GetMLModel operation to check the progress of the MLModel /// during the creation operation. /// /// /// /// CreateMLModel requires a DataSource with computed statistics, /// which can be created by setting ComputeStatistics to true /// in CreateDataSourceFromRDS, CreateDataSourceFromS3, or CreateDataSourceFromRedshift /// operations. /// /// public partial class CreateMLModelRequest : AmazonMachineLearningRequest { private string _mlModelId; private string _mlModelName; private MLModelType _mlModelType; private Dictionary _parameters = new Dictionary(); private string _recipe; private string _recipeUri; private string _trainingDataSourceId; /// /// Gets and sets the property MLModelId. /// /// A user-supplied ID that uniquely identifies the MLModel. /// /// [AWSProperty(Required=true, Min=1, Max=64)] public string MLModelId { get { return this._mlModelId; } set { this._mlModelId = value; } } // Check to see if MLModelId property is set internal bool IsSetMLModelId() { return this._mlModelId != null; } /// /// Gets and sets the property MLModelName. /// /// A user-supplied name or description of the MLModel. /// /// [AWSProperty(Max=1024)] public string MLModelName { get { return this._mlModelName; } set { this._mlModelName = value; } } // Check to see if MLModelName property is set internal bool IsSetMLModelName() { return this._mlModelName != null; } /// /// Gets and sets the property MLModelType. /// /// The category of supervised learning that this MLModel will address. Choose /// from the following types: /// ///
  • /// /// Choose REGRESSION if the MLModel will be used to predict /// a numeric value. /// ///
  • /// /// Choose BINARY if the MLModel result has two possible values. /// ///
  • /// /// Choose MULTICLASS if the MLModel result has a limited number /// of values. /// ///
/// /// For more information, see the Amazon /// Machine Learning Developer Guide. /// ///
[AWSProperty(Required=true)] public MLModelType MLModelType { get { return this._mlModelType; } set { this._mlModelType = value; } } // Check to see if MLModelType property is set internal bool IsSetMLModelType() { return this._mlModelType != null; } /// /// Gets and sets the property Parameters. /// /// A list of the training parameters in the MLModel. The list is implemented /// as a map of key-value pairs. /// /// /// /// The following is the current set of training parameters: /// ///
  • /// /// sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending /// on the input data, the size of the model might affect its performance. /// /// /// /// The value is an integer that ranges from 100000 to 2147483648. /// The default value is 33554432. /// ///
  • /// /// sgd.maxPasses - The number of times that the training process traverses /// the observations to build the MLModel. The value is an integer that ranges /// from 1 to 10000. The default value is 10. /// ///
  • /// /// sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling /// the data improves a model's ability to find the optimal solution for a variety of /// data types. The valid values are auto and none. The default /// value is none. We strongly recommend that you shuffle your data. /// ///
  • /// /// sgd.l1RegularizationAmount - The coefficient regularization L1 norm. /// It controls overfitting the data by penalizing large coefficients. This tends to drive /// coefficients to zero, resulting in a sparse feature set. If you use this parameter, /// start by specifying a small value, such as 1.0E-08. /// /// /// /// The value is a double that ranges from 0 to MAX_DOUBLE. /// The default is to not use L1 normalization. This parameter can't be used when L2 /// is specified. Use this parameter sparingly. /// ///
  • /// /// sgd.l2RegularizationAmount - The coefficient regularization L2 norm. /// It controls overfitting the data by penalizing large coefficients. This tends to drive /// coefficients to small, nonzero values. If you use this parameter, start by specifying /// a small value, such as 1.0E-08. /// /// /// /// The value is a double that ranges from 0 to MAX_DOUBLE. /// The default is to not use L2 normalization. This parameter can't be used when L1 /// is specified. Use this parameter sparingly. /// ///
///
public Dictionary Parameters { get { return this._parameters; } set { this._parameters = value; } } // Check to see if Parameters property is set internal bool IsSetParameters() { return this._parameters != null && this._parameters.Count > 0; } /// /// Gets and sets the property Recipe. /// /// The data recipe for creating the MLModel. You must specify either the /// recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default. /// /// [AWSProperty(Max=131071)] public string Recipe { get { return this._recipe; } set { this._recipe = value; } } // Check to see if Recipe property is set internal bool IsSetRecipe() { return this._recipe != null; } /// /// Gets and sets the property RecipeUri. /// /// The Amazon Simple Storage Service (Amazon S3) location and file name that contains /// the MLModel recipe. You must specify either the recipe or its URI. If /// you don't specify a recipe or its URI, Amazon ML creates a default. /// /// [AWSProperty(Max=2048)] public string RecipeUri { get { return this._recipeUri; } set { this._recipeUri = value; } } // Check to see if RecipeUri property is set internal bool IsSetRecipeUri() { return this._recipeUri != null; } /// /// Gets and sets the property TrainingDataSourceId. /// /// The DataSource that points to the training data. /// /// [AWSProperty(Required=true, Min=1, Max=64)] public string TrainingDataSourceId { get { return this._trainingDataSourceId; } set { this._trainingDataSourceId = value; } } // Check to see if TrainingDataSourceId property is set internal bool IsSetTrainingDataSourceId() { return this._trainingDataSourceId != null; } } }