/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ /* * Do not modify this file. This file is generated from the sagemaker-2017-07-24.normal.json service model. */ using System; using System.Collections.Generic; using System.Xml.Serialization; using System.Text; using System.IO; using System.Net; using Amazon.Runtime; using Amazon.Runtime.Internal; namespace Amazon.SageMaker.Model { /// /// Contains information about the location of input model artifacts, the name and shape /// of the expected data inputs, and the framework in which the model was trained. /// public partial class InputConfig { private string _dataInputConfig; private Framework _framework; private string _frameworkVersion; private string _s3Uri; /// /// Gets and sets the property DataInputConfig. /// /// Specifies the name and shape of the expected data inputs for your trained model with /// a JSON dictionary form. The data inputs are Framework specific. /// /// /// /// DataInputConfig supports the following parameters for CoreML /// TargetDevice (ML Model format): /// /// /// /// CoreML ClassifierConfig parameters can be specified using OutputConfig /// CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. /// CoreML conversion examples: /// /// /// /// Depending on the model format, DataInputConfig requires the following /// parameters for ml_eia2 OutputConfig:TargetDevice. /// /// /// [AWSProperty(Required=true, Min=1, Max=1024)] public string DataInputConfig { get { return this._dataInputConfig; } set { this._dataInputConfig = value; } } // Check to see if DataInputConfig property is set internal bool IsSetDataInputConfig() { return this._dataInputConfig != null; } /// /// Gets and sets the property Framework. /// /// Identifies the framework in which the model was trained. For example: TENSORFLOW. /// /// [AWSProperty(Required=true)] public Framework Framework { get { return this._framework; } set { this._framework = value; } } // Check to see if Framework property is set internal bool IsSetFramework() { return this._framework != null; } /// /// Gets and sets the property FrameworkVersion. /// /// Specifies the framework version to use. This API field is only supported for the MXNet, /// PyTorch, TensorFlow and TensorFlow Lite frameworks. /// /// /// /// For information about framework versions supported for cloud targets and edge devices, /// see Cloud /// Supported Instance Types and Frameworks and Edge /// Supported Frameworks. /// /// [AWSProperty(Min=3, Max=10)] public string FrameworkVersion { get { return this._frameworkVersion; } set { this._frameworkVersion = value; } } // Check to see if FrameworkVersion property is set internal bool IsSetFrameworkVersion() { return this._frameworkVersion != null; } /// /// Gets and sets the property S3Uri. /// /// The S3 path where the model artifacts, which result from model training, are stored. /// This path must point to a single gzip compressed tar archive (.tar.gz suffix). /// /// [AWSProperty(Required=true, Max=1024)] public string S3Uri { get { return this._s3Uri; } set { this._s3Uri = value; } } // Check to see if S3Uri property is set internal bool IsSetS3Uri() { return this._s3Uri != null; } } }